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Measurement Error and Bias in Value-Added Models

Michael T. Kane

Educational Testing Service, Princeton, NJ

By aggregating residual gain scores (the differences between each student’s current score and a predicted score based on prior perfor-
mance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known
that random errors in the prior scores will introduce bias into predictions of the current scores, and thereby, into the estimated residual
gain scores and VAM scores. The analyses in this paper examine the origins of this bias and its potential impact and indicate that the
bias is an increasing linear function of the student’s prior achievement and can be quite large (e.g., half a true-score standard deviation)
for very low-scoring and high-scoring students. To the extent that students with relatively low or high prior scores are clustered in par-
ticular classes and schools, the student-level bias will tend to generate bias in VAM estimates of teacher and school effects. Adjusting
for this bias is possible, but it requires estimates of generalizability (or reliability) coefficients that are more accurate and precise than
those that are generally available for standardized achievement tests.

Keywords VAMs; bias; residual gain scores; bias in school-level VAM scores; validity; generalizability of state test scores
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Teachers and schools have always been evaluated in terms of how well they seemed to be functioning. Traditionally,
the evaluations have tended to focus on input variables like what is being taught, the methods being used in teaching, the
perceived quality of materials and teacher performance, and the overall climate of the school or class. Starting with the No
Child Left Behind legislation and the development of value-added models (VAMs), the focus has shifted to the evaluation
of outcome measures, particularly student performance on standardized tests (Koretz & Hamilton, 2006).

VAMs are designed to support inferences about a school’s or teacher’s contribution to student growth over the course
of a year by comparing the current test scores of their students to the scores of the same students in the prior year (or
years), either directly (in gain-score models) or indirectly (e.g., in residual gain score or covariate-adjustment models).
The intent is to isolate the gains in student achievement (as indicated by changes in test scores from one year to the next)
that are attributable to the school or teacher for the given year and to use some function of these gains in the evaluation
of the teacher or school. VAMs employ sophisticated statistical models to control for various factors that could have an
impact on student scores, and by controlling for these extraneous factors, they aim to get a good estimate of teacher or
school effects (Braun, Chudowsky, & Koenig, 2010; McCaftrey, Lockwood, Koretz, & Hamilton, 2003).

Residual Gain Scores

A natural way to evaluate student growth along some dimension would be to estimate the student’s standing on the dimen-
sion at the current time and at some prior time and to examine the change, or growth, between the current and prior
estimates. Growth scores are familiar, simple, and direct, but the current and prior scores have to be on the same scale
(or on vertically aligned scales) for the differences to make sense. Furthermore, the scale has to be an interval scale in the
sense that a difference of a certain number of points has, at least approximately, the same meaning along the scale, so that
it makes sense to compare gain scores from different parts of the scale (Braun et al., 2010; Briggs, 2013; Haertel, 2013;
Kolen, 2006; Koretz & Hamilton, 2006; Rothstein, 2009). Unfortunately, it is very hard to put the test scores from different
grade levels on a common scale and to demonstrate that the resulting scale is an interval scale (Briggs, 2013); some uncer-
tainty about scale characteristics is not a problem for many applications of vertical scaling, but it is a serious problem if
the proposed use of the scores (e.g., educational accountability based on growth scores) demands that the vertical scale
be demonstrably equal interval (Ballou, 2009; Betebenner, 2009; Briggs & Domingue, 2013; McCaftrey et al., 2003).
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One way to remove the need to establish an interval scale across grades is to use residual gain scores (Castellano & Ho,
2013) or covariate-adjustment models (McCaffrey et al., 2003; McCaftrey, Lockwood, Koretz, Louis, & Hamilton, 2004).
In these models, student test scores for the current year are adjusted to remove the effects of prior learning, as indicated
by the prior year’s scores and other available student and context variables. In the simplest version, a student’s prior test
score is used to predict the current test score, and the difference between the actual and predicted scores, the residual,
is interpreted as an indicator of the student’s growth relative to the expected growth of students with the same predicted
score. By aggregating the results across the students in a school or taught by a teacher, an inference can be drawn about the
effectiveness of the school or teacher. The accuracy of these inferences will depend on the completeness and accuracy of the
prior information and on the accuracy of the statistical model in making adjustments for extraneous factors (recognized
and unrecognized).

The logic of ordinary least squares (OLS) regression does not require that the scores on the two tests be on the same
scale. The predicted current scores are on the current-score scale, because regression-based predictions are on the scale
of the dependent variable, regardless of the independent variables included; for example, OLS regression can be used to
predict students’” heights in inches based on their ages in months. So, in using residual gain scores, it is not necessary to
link last year’s scores to this year’s scores in a vertical scale. However, it is still necessary to assume that a difference of a
certain number of points has more or less the same meaning along the score scale for the current test scores (i.e., that the
scaled scores for each grade are approximately interval, but the grade scales are not necessarily linked).

By focusing on the residual score that results when the predicted current score is subtracted from the actual current
score, prior educational experiences (as reflected in the prior year’s scores) are controlled to some degree, but such adjust-
ments can be biased to the extent that the predicted score does not include all factors that may have an impact on student
performance. Bias can also result from errors of measurement in the prior scores included in the prediction equation.
Estimates of residual gain scores rely on OLS regression, and OLS regression assumes that the independent variables are
measured without error. It is well known that random errors in an independent variable will lead to bias in the estimation
of the true-score relationship between the dependent variable and the independent variable (Berry, 1993; Campbell &
Kenny, 1999; Harris, 1963; Lockwood & McCaftrey, 2014; McCaffrey et al., 2003). The analyses in this paper examine how
this bias gets incorporated into student gain scores and then into teacher and school effects, and the results indicate that
the bias due to random error in the prior scores can be substantial.

As indicated later in this paper, the resulting bias is an increasing linear function of the student’s prior true scores; the
gains for students with high true scores on the prior year’s test will be overestimated, and the gains for students with low
true scores in the prior year will be underestimated. To the extent that students with relatively low and high true scores tend
to be clustered in particular classes and schools, the student-level bias will generate bias in estimates of teacher and school
effects. If not corrected, this source of bias could have a substantial negative impact on estimated VAM scores for teachers
and schools that serve students with low prior true scores and could have a substantial positive impact for teachers and
schools that serve mainly high-performing students. Given that the results of VAMs may be used for high-stakes decisions
about teachers and schools in the context of accountability programs (Braun et al., 2010; Winters & Cowen, 2013), any
substantial source of bias would be a matter of great concern.

The discussion, presented below, of bias in residual gain scores based on OLS regression does not necessarily apply
to VAMs that do not rely on such residual gain-scores. Analyses based on simple growth scores, as such, would not be
subject to this bias. Student growth percentiles (Betebenner, 2009) are based on quantile regression, which is different from
OLS regression in several ways (e.g., focusing on current-score percentiles rather than means and residuals), but like OLS
regression, quantile regression also assumes that the independent variable (the prior year scores) is free of measurement
error. As a result, student growth percentiles are likely to include bias due to random errors in the prior scores, but this
possibility is not addressed here (see McCaffrey, Castellano, & Lockwood, 2015).

Bias in Residual Gain Scores

The use of OLS regression introduces bias into the estimation of residual gain scores if the prior scores contain random
error. To illustrate the direction and potential magnitude of this source of bias, I will examine a particularly simple special
case. I will assume that the current true scores are a linear function of the previous year’s true scores for all students:

Ty =a+ pTy, (1)
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where Ty is a student’s current true score, and Ty is the student’s true score from the prior year. The true scores are
expected values of the X and Y scores for each student over independent replications of the testing procedure. For the
kinds of achievement tests used in VAMs, replications could involve different items, administered on different days during
some part of the school year, and for constructed responses, scored by different raters.

The values of the constants, @ and f, will depend on the scaling employed in the testing program. If some kind of
vertical scaling is employed in the testing program, with score means increasing from year to year, @ and f would both
generally be positive, and their values would depend mainly on the details of the scaling procedure and on the general-
izability/reliability of the observed scores in each year. For the purposes of this paper, the value of a is largely irrelevant,
and the precise value of f is not critical, as long as it is not zero. It is convenient and highly plausible to assume that f is
positive; test scores are highly correlated across years (Boyd, Langford, Loeb, & Wyckoft, 2013).

In state testing programs, the scores at each grade level are commonly scaled to have a common mean and common
variance. If the observed scores are scaled to have the same mean and variances for each grade level and their reliabilities
are approximately the same across grade levels, @ would be very close to 0.0, and § would be very close to 1.0.

Equation 1 implies that teachers and schools have no differential impact on student growth. Students’ current true
scores have the same relationship to the student’s previous true scores, independent of what school students attend or
what teachers they have. That is, we are assuming that all teachers and schools are uniformly good or bad, and therefore,
any systematic differences between estimated current scores and actual current scores for teachers or schools can be
interpreted as bias in estimates of school or teacher effects.

Equation 1 does not provide a realistic model for changes in true scores from 1 year to the next, and this hypothetical
relationship is introduced only to facilitate an examination of the bias in residual gain scores due to random errors in the
prior year’s scores. A particularly simple model for which we know what the outcomes should be has been postulated as
a thought experiment. If the residual gain estimates yield the expected results, our confidence in the use of residual-gain
scores to estimate differential learning across students and average student performance across teachers would increase.
However, if the residual gain estimates do not yield the expected results (i.e., no differential change), we can conclude that
these analyses are biased, at least in some cases.

The observed scores from the previous year have measurement errors, and can be represented as:

X= Tx+5x, (2)

where Ty is the student’s true prior score, and €y is the random error in the student’s prior score; the error has a mean of
zero, and is uncorrelated with the true score for X. Similarly, the observed scores from the current year also have error,
and can be represented as:

Y = TY + 5y, (3)

where Ty is the student’s true current score, and €y is the current-score random error, which has a mean of zero and is
uncorrelated with the true score for Y. The random errors, e and €y, are also assumed to be uncorrelated with each other
and with the two true scores.

A student’s scores on an achievement test would be likely to fluctuate if the testing were replicated with different samples
of tasks, on different occasions (within some testing window), and for extended-response tasks, for different scorers,
and these fluctuations, which are uncorrelated with all other variables (not defined in terms of the observed scores),
are generally treated as random errors, or noise (Brennan, 2001a; Kane, 2011). Taking the true scores to be expected
values over replications, as is done in classical test theory and generalizability theory, the errors have a mean of 0.0 and
are uncorrelated with true scores. In classical test theory, the error is generally treated as a single random variable; in
generalizability theory, the error is analyzed into separate components representing different sources of variability that
contribute to the overall error (Brennan, 2001a, 2001b). The error terms in Equations 2 and 3 are assumed to include
the contributions of all sources of random error (fluctuations with a mean of zero and zero correlations with the other
variables); indices that involve only one or two of the relevant sources of error (e.g., indices like coeflicient alpha) provide
underestimates of this overall error.

In this section, we examine the impact of the overall error in the prior observed scores on estimates of residual gain
scores. In a later section, we consider the magnitudes of different sources of error for state achievement tests, and their
contribution to the overall error.
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The expected value of the observed X scores over all students in the population is:
ux =EX)=E(Tx+ex) =E(Ty). (4)
The variance in the observed X scores is:

6)2(=E<X_#X)2ZE(TX+£X_MX)2:6%X+U§X' (5)

The generalizability/reliability of the prior test scores, pxx/, is the ratio of true-score variance to observed-score vari-
ance.
Similarly, the expected value of the observed Y scores over the population is:

py =E(Y)=E(Ty+ey) =E(Ty). (6)
Using Equations 1 and 4, it is also equal to:

The variance in Y is given by:

2
o-f, =E [TY - py + EY] = o-%y + aezy, (8)

and using Equations 1 and 7, it is also equal to:

O'?, =E [ﬂ (TX — ;4X) + £Y]2 = ﬁzaéx + ofy. 9)

The covariance between Y and X is given by:
= ﬂa%x. (10)

The correlation between Y and X is:

2
cov(Y,X) ‘BGTX

OyOx OyOx

(11)

Pxy =

Consider a student with a true score of T in the prior grade. By our assumption that students’ current true scores are
linearly related to their prior true scores, this student would have an observed score in the current grade of:

Y=Ty+ey =a+ Ty +ey. (12)

Using a general form of an OLS regression, employing population values for the parameters, the student would have a
predicted score for the current grade of:

P = pyy L (X = py) + py. (13)

Ox

In value-added contexts, the numbers of students used to estimate population statistics (means, standard deviations, cor-
relations) are typically quite large, and therefore, the estimates should be very close to the population values, and I have not
bothered to complicate the notation to indicate that the current-score estimates would be based on an estimated regression
equation.

In addition, we have assumed that the only variable used to predict students’ current scores is their prior scores. In
some cases, more than one prior score may be used, but these prior scores can generally be combined into a single prior
score with suitable weighting; the combined score would generally have a higher generalizability than a single prior score
would have, and the magnitude of the problem discussed here would be reduced, but it would not be eliminated. Also,
additional student variables may be included in the prediction, but in these cases, the prior test scores tend to dominate
the prediction equation (Haertel, 2013; McCaffrey et al., 2004; Newton, Darling-Hammond, Haertel, & Thomas, 2010;
Rothstein, 2009; Sanders & Horn, 1998), and the simple model employed here provides an indication of how the bias due
to random errors in prior scores would operate in more complex models with student background variables as additional
covariates.
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The slope of the regression line in Equation 13 can be simplified a bit using Equation 11:

Oy O-%x Oy %X
Pxy —=——— = ﬁ_z = Prxxr> (14)
O-X UYUX GX GX

where pyy is the generalizability of the prior test scores, the ratio of prior true-score variance to the prior observed-
score variance. This generalizability coefficient is intended to reflect all sources of random fluctuations contributing to the
overall error.

The predicted current score as a function of the prior score can then be written as:

Y = oy (X — ux) + py. (15)

Note that the slope of this OLS regression equation is different from the slope of the true-score relationship, given by:

Ty = B (Tx — py) + uy = a + pTx. (16)

The slope of the estimated OLS regression line in Equation 15 is smaller than the slope of the line representing the
true-score relationship in Equation 16 by a factor of the generalizability of the prior scores. This effect is an example of
regression to the mean (Campbell & Kenny, 1999).

Using Equations 2, 3, 7, 15, and 16, the residual gain score can be written as:

Y-Y= [a + pTx + sy] - [ﬂpXX/ (Tx +ex —ux) + (a+ ﬁ,uX)] . (17)

Assuming, as we are, that there are no teacher or school effects, and the current scores are adjusted for prior learning
(specifically, the prior test scores), the expected value of the residuals in Equation 17 (over independent replications of
testing procedures) should be zero for all students.

The expected value, over replications of the testing procedure, of the residual, given TV, is the expected value, over
replications, of (Y — Y), given T:

E (Y— i}|Tx> = [0‘ +ﬁTX] - [ﬂl’xx' (TX - #X) + (“"‘ﬁﬂx)] > (18)

or
E<Y_?|TX>=ﬁ(l_pXX’) (TX_MX)~ (19)

Note that the expected residual in Equation 19 is not generally equal to zero, unless the reliability of the prior scores is
1.0, or the particular prior true score under consideration, Ty, equals the mean of the prior true scores. Assuming that
p is positive (i.e., that the observed scores and therefore the true scores are positively correlated from year to year), the
expected residual is positive for prior true scores above the mean and gets larger as the prior true score gets higher, and
the expected residual is negative for prior true scores below the mean and gets larger in magnitude as the prior true score
gets lower.

The direction of the bias is consistent with empirical findings indicating that, even after controlling for prior scores and
some student characteristics, teachers of low-scoring students are at a disadvantage:

. we found that students’ residualized achievement scores were, in most analyses, more strongly predicted by
the students’ prior achievement and the course they were in than by the teacher .... Each teacher appeared to
be significantly more effective when teaching upper-track courses than the same teacher appeared when teaching
lower-track courses. (Newton et al., 2010, p. 18)

The bias associated with measurement error in the prior scores can explain these empirical results, at least in part.

Magnitude of the Bias in Individual-Student Residual Gain Scores

As noted above, the bias associated with random errors in the prior year’s test scores is not a constant; it is equal to
zero for students with prior scores equal to the prior mean score and is increasingly positive for higher prior true scores
and increasingly negative for lower prior true scores. The bias is also zero if the prior test scores have a generalizability
coefficient of 1.0, and otherwise, its magnitude gets larger as the generalizability of the prior scores decreases.
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Bias tends to be a more serious problem than random errors, but it is not necessarily so serious if the magnitude of
the bias is small compared to other sources of random and systematic error. So it is useful to get some indication of the
magnitude of the bias associated with random errors in the prior scores. The bias due to errors in the prior scores will
potentially apply at the individual student level and at both the teacher and school levels. In this section, I will focus on the
individual student bias. In the next section, I will focus on the school level; the effect is more complicated at the teacher
level, and empirical estimates of some of the relevant quantities needed to estimate the effect are not readily available at
the teacher level.

As noted earlier, in state testing programs in which scale scores at each grade level have fixed means and have similar
standard deviations from year to year, f is likely to be quite close to 1, and the bias introduced by the errors of measurement
in the prior scores, given by Equation 19, can be simplified by assuming that g =1:

E(Y—?|TX>= (1= pyr) (Tx = piy) - (20)

The first factor in Equation 20 reflects the proportion of the observed variance in the prior scores that is attributable to
random error (as indicated by the generalizability coefficient), but the generalizability coefficient under consideration here
is not simply an indicator of variability over different samples of items (as coefficient alpha would be). Rather, the random
errors that are of concern include all random sources of variability in the prior test scores, which are uncorrelated with
the prior true scores and the current true scores. This generalizability coefficient could be estimated by a generalizability
coeflicient (Brennan, 2001b; Cronbach, Gleser, Nanda, & Rajaratnam, 1972) that reflects all potential sources of error
(e.g., variability associated with the sampling of items and occasions, and if relevant, any variability over raters).

As indicated earlier, the estimated generalizability/reliability coefficients for state tests (generally coefficient alpha) are
likely to overestimate the actual generalizability reflecting the overall random error. Any aspects of testing contributing to
score variability that is uncorrelated with the true scores and with other variables of interest are source of random error.
In generalizability theory (Brennan, 2001b; Cronbach et al., 1972), each identifiable source of variance (e.g., sampling of
items) is referred to as a facet, and we can have item facets, occasion facets, rater facets, and so on. The contribution of each
facet to the overall error depends on the magnitudes of variance components associated with the facet, the data-collection
design, and the proposed interpretation of the scores. Because commonly used estimates of the reliability of standardized
test scores (e.g., coefficient alpha) tend to focus on only one source of error, they tend to underestimate the total error
and to overestimate generalizability coefficients that incorporate all potentially substantial sources of error. The variability
associated with occasions (Cronbach, Linn, Brennan, & Haertel, 1997; Lane & Stone, 2006) will reflect changes in student
motivation, wellness, and so on, as well as any variability in the environment and conditions of test administration from
one occasion to another, and it is potentially substantial.

The reported estimates of generalizability (generally reported as reliability coefficients) for state tests are typically based
on analyses of internal homogeneity (e.g., coefficient alpha) and tend to be about 0.90 or a bit higher. For example, the
North Carolina Department of Public Instruction (2014) reported coefficient alphas between 0.88 and 0.92 in English lan-
guage arts (ELA) and between 0.91 and 0.93 in mathematics for their end-of-grade assessments for grades 3-8. The New
York State Education Department (2015) reported alphas for grades 3 -8 ranging from 0.89 to 0.92 for ELA and, ranging
from 0.93 to 0.95 for mathematics. The Wisconsin Department of Public Instruction (2015) reported coefficient alphas
for ELA ranging from 0.87 to 0.91, and for mathematics, ranging from 0.89 to 0.91. Ferrara (2006) reviewed technical
reports from 11 states (not including the three mentioned above) to evaluate the technical characteristics of state testing
programs and reported that all provided internal-consistency estimates (coefficient alpha) for content-area (e.g,, reading,
mathematics) scores (with one reporting a stratified alpha); most of the alphas were greater than 0.85 and ranged into the
low to mid 0.90s.

Given that these values are likely to be overestimates, the generalizability coefficient in Equation 21 is likely to be less
than 0.90 for state testing programs and could easily be in the low 0.80s if the variance components for occasions, and
(if appropriate) raters, in addition to tasks/items (the only source of error included in coefficient alpha), were included
in the estimates. Estimates of generalizability coeflicients that include occasions as a source of variance are rare for state
tests. Rothstein (2009) referenced estimates of the test-retest reliability for the North Carolina seventh grade reading test
reported by Sanford (1996) of 0.86. Boyd et al. (2013) suggested that the actual error in state achievement test scores may
be twice as large as the reported values, which would suggest a generalizability/reliability coefficient of about 0.80. In this
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section, I use 0.90 and 0.80 as benchmark values for the generalizability coefficient in examining possible magnitudes for
the bias; the actual values for different state tests are probably distributed across this range.

Assuming a generalizability of 0.90, the first term in Equation 20 would be 0.10, and a student with a prior true score
that is one true-score standard deviation above the prior mean true score would have a positive bias of a 10th of a true-
score standard deviation in the prior scores, X, and a student with a prior true score one standard deviation below the
mean would have a negative bias of a 10th of a true-score standard deviation in X. Note that, because of the assumption
in Equation 1, these students would also have current true scores that are, respectively, one standard deviation above and
below the current mean true score.

Similarly, students with prior true scores that are two standard deviations above or below the mean prior score would
experience a positive or negative bias of 2/10ths of a true-score standard deviation in X, and students with true scores
three standard deviations above or below the mean would experience a positive or negative bias of 3/10ths of a true-score
standard deviation in X.

For a generalizability of 0.80, the bias would be twice as large as it would be for a generalizability of 0.90, and for
students with prior true scores one true-score standard deviation above or below the mean prior score, the magnitude
of the bias would be 2/10ths of a true-score standard deviation in X. For students with prior true scores two true-score
standard deviations from the mean, the magnitude of the biases would be 4/10ths of a true-score standard deviation in
X, and for students with prior true scores three standard deviations from the mean, the magnitude of the biases would be
6/10ths of a true-score standard deviation in X. So, the student-level bias can be quite substantial for students with prior
true scores two or three true-score standard deviations from the mean prior score.

Magnitude of the Bias in Residual Gain Scores for Schools

The bias in estimating residual gain scores, based on a fallible prior score, can be quite large (over halfa true-score standard
deviation) for individual students. If not corrected, this bias can generate bias in estimates of teacher and school effects,
but the magnitudes of the teacher and school effects will tend to be considerably smaller than the biases in individual
student estimates because of averaging. The positive biases for students with prior scores above the mean and the negative
biases for students with prior scores below the mean will tend to cancel out. If the mean prior score for a teacher or school
happens to be zero, there will be no bias attributable to errors of measurement in the prior scores. If the teacher or school
mean prior score is different from zero, the errors of measurement in prior scores will have an impact on estimated teacher
and school effects.

To get at least a rough indication of the impact of the bias to be expected at the school level, we need an estimate of
the test-score generalizability and an indication of the standard deviation of the average true scores across schools. The
expected value of the bias for a school will be a linear function of the average prior true score for the school:

E<Y— /YlT_X> = (1= pxx) <T_X—/4x>- (21)

As indicated above, the generalizability/reliability coefficients for state tests are likely to be between about 0.90 and about
0.80, and we can take the middle of this range, 0.85, as a reasonable estimate of the overall generalizability of the test
scores.

We have less information on the variability of school means. The prior-score means can be different from zero for a
number of reasons. If students were randomly assigned to schools, the distribution of prior-score means would have a
mean equal to the prior score mean of the population and a standard deviation equal to the standard deviation of the
individual prior scores divided by the square root of the number of students in the school. This random component
will tend to be small for schools with large numbers of students, but could be significant for small schools. This random
component would vary from year to year as new random samples of students are selected each year; over consecutive
years, it functions as a source of random error in evaluating school performances, but for a given year, it functions as a
source of bias in the sense, that if not corrected, it puts individual schools at an advantage or disadvantage before they
begin the school year.

Students are not randomly assigned to schools (Aaronson, Barrow, & Sander, 2007; Briggs & Domingue, 2011; Stone &
Lane, 2003). Assignment to schools is generally based, to a large extent on where students live, and neighborhoods tend to
vary considerably in their income levels and other demographic variables, and test scores are correlated with these factors.
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Stone and Lane (2003) reported that, between 1993 and 1997, the standard deviation across schools of mathematics scores
on the Maryland State Performance Assessment Program (MSPAP) ranged between .45 and .48 of the standard deviation
in individual scores, and the standard deviation across schools of reading scores ranged from .34 to .41 of the standard
deviation in individual scores. If one takes 0.40 as a representative value for the standard deviation of observed scores and
takes 0.85 to be the generalizability coefficient, the true-score standard deviation of the school means can be obtained by
multiplying the observed-score standard deviation by the square root of the generalizability, yielding an estimate of about
0.37.
Based on data from North Carolina, Kane and Staiger (2002) concluded that:

In North Carolina elementary schools near the national average in size (between sixty-five and seventy-five students
with valid test scores), the variance in mean reading and math scores was 0.087 and 0.092 respectively. Dividing the
estimated amount of variance due to sampling variation for a school of average size (0.013) by the total variance
observed for such schools, we would infer that 14 to 15 percent of the variation in fourth-grade math and reading
test scores was due to sampling variation. (p. 241)

The observed-score standard deviations is about 0.30 for both reading and mathematics, so, the true-score standard
deviation for school means is about 0.27 for both areas, For smaller schools, with around 40 students, Kane and Staiger’s
(2002) analyses suggested that observed-score standard deviation across schools would be about 0.4, so the true-score
standard deviation across schools would be about 0.37.

The two analyses are pretty similar, especially given that they involve tests and data sets from different states. Given
these two analyses, it would seem reasonable to take the universe score variance to be about 0.32 (the average of 0.27 and
0.37). Substituting 0.85 for the generalizability in Equation 21,

E(Y—?|T_X) =15 <T_X—;4X>. (22)

Given a school true-score standard deviation across schools of 0.32 student standard deviations and a roughly normal dis-
tribution, we can assume that about a third of the school means would be more than 0.32 student standard deviations above
or below the overall mean and would therefore experience a bias due to error in prior scores of over (0.15)(.32) =0.05.
Further, under these conditions, it would not be uncommon (about 5% of the schools) for the school means to be over
0.64 student standard deviations above or below the overall mean and to experience a bias due to error in prior scores of
over 0.10.

The school level biases are much smaller than the student-level biases, but they are large enough to be a source of
concern. As noted earlier bias tends to be more serious than random errors, because bias does not cancel out over time;
rather it can accumulate over time. A bias of 0.05 or 0.10 is a serious concern in a context in which the true-score standard
deviation is only about 0.30.

Teachers and schools serving students with low prior scores would be at a serious disadvantage, and teachers and
schools serving students with high prior scores would be at an advantage. The bias discussed in this paper is a statistical
artifact related to regression to the mean, but it is not unrelated to concerns about social bias defined in terms of race,
gender, and socioeconomic level. Stone and Lane (2003) found that school means were strongly related to measures of
socioeconomic status; in particular, they found that the percentage of students participating in free or reduced price lunch
was consistently related to school MSPAP averages.

Boyd, Lankford, Loeb, Rockoft, and Wyckoft (2007) reported that for students in the New York City public schools
in 2005, over 50% of fourth-grade students in the highest poverty decile (the poorest students) and over 75% of eighth-
grade students in this decile failed to meet the proficiency standard on the end-of-year ELA exam, while only about 18%
of fourth-grade students and about 41% of eight-grade students in the lowest poverty decile failed to meet this standard;
high-poverty schools are likely to have students with low-prior scores.

Correcting for the Bias due to Measurement Errors in Prior Scores

A number of methods have been proposed to correct for the bias due to random errors in the prior test scores by adjusting
for the regression-to-the-mean produced by random errors in the prior scores (Fuller, 1987; Lockwood & McCaffrey,
2014). For example, if we adjust the slope of the OLS regression in Equation 15, by dividing it by the generalizability of the
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prior scores, we get an unbiased estimate of the true-score relationship in Equation 1, and the bias due to random errors
in the prior scores is eliminated. However, as noted earlier, most readily available estimates of the generalizability (e.g.,
coefficient alpha) do not include all known sources of error, and therefore, these estimates are likely to underestimate the
overall error and overestimate generalizability coefficients.

If we correct for the error in the prior scores by dividing by an estimate of their generalizability, 7y, the expected value
of the bias indicated by Equation 19 would be:

E(Y—?|TX)=ﬂ(1—”XX’>(TX—MX). (23)

I'xx’

If the estimated generalizability equals the generalizability of interest (i.e., if ryx» = pxxs), Equation 23 would be 0.0 for
all values of the prior true score, and the bias due to random errors in the prior scores would disappear. If the estimated
generalizability is greater than the generalizability of interest (i.e., if ryxs > pxxs), the bias would decrease in magnitude,
but be in the same direction. If the estimated generalizability is smaller than the generalizability of interest (i.e., if ryys
< pxxr)> the correction would result in a bias in the opposite direction, and could be larger or smaller than the original
bias.

If one were to adequately correct for the bias due to random errors in the prior scores, one would need a reliabil-
ity/generalizability coefficient that reflects all significant sources of random error in the prior scores. As indicated earlier,
the reliability coefficients reported for state testing programs are likely to be overestimates of the generalizability coef-
ficient of interest because they omit sources of error associated with variability over occasions, raters, and contexts of
testing, and a more realistic estimate of the generalizability reflecting variability over tasks, occasions, raters, and con-
texts would probably be in the middle to low 0.80s (Boyd et al., 2013; Sanford, 1996). Assuming that the generalizability
associated with the total error is 0.80, and the generalizability used to correct for the impact of random errors in the prior
scores is 0.90, the bias would be reduced by about 50%. If the generalizability associated with the total error is 0.85, and the
generalizability used to correct for the impact of random errors in the prior scores is 0.90, the bias would be reduced by
about 63%. Correcting for the errors in prior scores, using a coefficient that underestimates the magnitudes of the errors
(e.g., coefficient alpha) reduces the bias, but does not eliminate it.

Progress is being made on methods to minimize the bias introduced by random errors in the prior scores (Lock-
wood & McCaftrey, 2014), but most of these methods rely on estimated reliability or generalizability coefficients, and
confidence in the adjustments will depend, in large part, on confidence in the estimates of the coeflicients. The statisti-
cal adjustments will require accurate and precise estimates of coeflicients or standard errors, based on generalizability
studies that incorporate all sources of random variability and have adequate sample sizes; the adjustments need to meet
the Goldilocks criterion — that the results are not being substantially underadjusted or overadjusted, but are just about
right.

If one is going to correct for the bias associated with random errors in the prior test scores for VAM-based accountabil-
ity programs, one will need to have accurate estimates of coeflicients reflecting the overall error, including all significant
sources of error. Getting accurate and precise estimates of all of variance components included in the error variance
will require more careful attention to the estimation of the reliabilities of the prior test scores than has typically been
the case in large-scale testing programs. Estimates of the variability due to the sampling of test tasks can be fairly pre-
cise because the estimates will generally involve a fairly large number of tasks, but estimates of the variability due to the
sampling of occasions are not generally so precise because the estimates generally involve only two or three occasions.
If estimates of reliability or generalizability coefficients or standard errors are to be used to adjust VAM scores in high-
stakes contexts, it would be important to document the precision of the estimated errors and coefficients, for example, by
estimating appropriate confidence intervals (Brennan, 2001b), as well as their accuracy in terms of the sources of error
included.

Asnoted earlier, Boyd et al. (2013) have suggested a procedure for estimating the total error directly, and they suggested
that the overall measurement error “is at least twice as large as that reported by the test vendor” (p. 629). It would be useful
to compare estimates of the total error based on thorough generalizability studies to the results of analyses employed by
Boyd et al. (2013); agreement between two disparate methods could increase confidence our estimates of the total error
and associated coefficients.
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Conclusions

VAMs are designed to draw inferences about a school’s or teacher’s impact on student learning based on their students’
test scores, while controlling for prior student learning (and possibly, other variables related to current performance). The
intent is to obtain unbiased estimates of the teacher’s or school’s contribution to gains in student achievement.

Residual gain scores provide seemingly plausible adjustments for prior learning, and they circumvent the need for
score scales that are linked across grades. The OLS regression models that are at the heart of residual gain estimates do not
require that the scores on the current and prior tests be on the same scale; they do not even require that the current and
prior tests measure the same variable. They do require that a linear model is plausible, and that the relationship is strong
enough for the purpose at hand.

Any random errors in the prior scores used as an independent variable in the OLS regression of current scores on prior
scores tend to add a positive bias to the residual gain scores for students with prior scores above the population mean,
and they tend to add a negative bias to the residual gain scores for students with prior scores below the mean. The bias
is associated with the well-known phenomenon of regression to the mean (Boggs, Spiegelman, Donaldson, & Schnabel,
1988; Deming, 1943; Fuller, 1987; Kane & Mroch, 2010), which does not cause problems in many contexts (particularly
where prediction, as such, is the main goal), but if not adequately addressed, it does introduce bias into VAMs based on
residual gain scores. The estimated VAM effects would tend to be overestimated for teachers and schools with relatively
high-scoring students and they would tend to be underestimated for teachers and schools with relatively low-scoring
students.

Note that if teacher assignments are based on the prior test scores to some extent, the bias due to unreliability in prior
scores could be reduced (Lockwood & McCaflrey, 2014). This is not likely to be the case for assignments to schools, but
could be an issue for assignments to teachers in schools.

Any source of bias in scores is troublesome, and a source of bias that has a substantial negative impact on VAM results
for teachers and schools serving at-risk students could be especially problematic. As indicated above, the resulting biases
in estimates of student gain scores could be quite large and positive for high-scoring students and could be quite large and
negative for low-scoring students.

The differences in estimates of the teacher and school effects, which would involve averages over samples of students,
would generally be far less dramatic, but given the way students are sorted into schools and classes in our educational
system (Kalogrides & Loeb, 2013), the biases in the teacher and school effects are likely to be substantial in many cases.
As indicated by the rough estimates presented earlier, if not corrected, the school-level bias could be a third of the overall,
school-level true-score standard deviation. With a correction for the errors in the prior scores based on an estimate of
internal consistency like coeflicient alpha, this bias could be reduced substantially (by about 50% or more), but it would
not be eliminated, unless the generalizability coefficient used for the correction takes account of all potentially substantial
sources of error.

This source of bias can be controlled if good estimates of the generalizability/reliability coeflicient reflecting all sources
of random error in the prior scores is available, but such estimates are not routinely estimated for state tests. Error analyses
that omit significant sources of random error tend to underestimate the error variance and overestimate the relevant
generalizability coefficient, and adjustments that rely on such overestimates of the relevant coefficients will not adequately
correct for the bias due to random errors in the prior scores.
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