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Abstract 

Sixteen US states have begun to hold teacher preparation programs (TPPs) accountable for teacher 

quality, as estimated by teacher value-added to student test scores. Yet it is not easy to identify TPPs 

whose teachers are substantially better or worse than average. The true differences between TPPs are 

small; the estimated differences are not very reliable; and when many TPPs are compared, multiple 

comparisons increase the danger of misclassifying ordinary TPPs as good or bad. Using large and 

diverse data from Texas, we evaluate statistical methods for estimating teacher quality differences 

between TPPs. The most convincing estimates come from a value-added model where confidence 

intervals are widened by the Bonferroni correction and by the inclusion of teacher random effects (or 

teacher clustering in large TPPs). Using these confidence intervals, it is rarely possible to tell which 

TPPs, if any, are better or worse than average. The potential benefits of TPP accountability may be too 

small to balance the risk that a proliferation of noisy TPP estimates will encourage arbitrary and 

ineffective policy actions. 
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1 Introduction 

After years of holding individual teachers accountable for their effects on student learning, policy 

leaders have raised their sights to the programs in which teachers are prepared. While governments have 

long played a role in approving and funding teacher preparation programs (TPPs), sixteen states have 

begun to practice a more rigorous form of TPP accountability, which has higher stakes and is more 

focused on results. 

The purpose of the new TPP accountability is to “close failing [TPPs], strengthen promising 

programs, and expand excellent programs” (Levine, 2006; cf. US Department of Education, 2011). In 

Texas, for example, the State Board of Educator Certification is now authorized to warn a TPP, to put a 

TPP on probation, to assign a TPP to intervention, or to revoke a TPP’s accreditation. The Board is also 

required to post estimates of TPP quality on the internet, providing “consumer information” that, like 

college rankings, can guide aspiring teachers in deciding which TPP will train them, and guide school 

administrators in deciding between job candidates from different TPPs (Texas State Legislature, 2009). 

To assess TPP quality, the new accountability systems “focus on student achievement as the 

primary measure of success” (Levine, 2006). A “good” TPP is defined as one whose teachers raise 

student test scores and graduation rates more than teachers from other TPPs. Defining TPP quality in 

terms of student outcomes is a sharp break with older systems that defined quality in terms of TPP 

inputs, resources, or processes. For example, as of 2006, states approved and accredited TPPs primarily 

on the basis of their coursework and student teaching requirements. About a third of states required 

faculty to hold a doctorate, and about a third also required prospective teachers to pass an admission or 

graduation test and to exceed a threshold grade point average (GPA) (Levine, 2006, Table 14). Under 

the new accountability, a TPP’s training methods and the grades or test scores of its trainees are 
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secondary issues. The primary question is whether the TPP is turning out teachers who raise student 

achievement. 

While a policy of holding TPPs accountable for the effects of their teachers on student 

achievement may seem promising, several conditions must be met for it to work in practice. The first 

condition is that teachers from different TPPs must differ substantially in their effectiveness. The 

average difference between teachers from good and bad TPPs must be large enough that a decision to 

expand a good TPP or close a bad one would have a meaningful effect on student achievement. This is 

not a given. Although individual teachers vary substantially in effectiveness, it may be that little of the 

variation in teacher effectiveness lies between TPPs. 

A second condition for effective accountability is that it must be possible to estimate the 

differences between TPPs reliably—i.e., without too much estimation error or noise. Noise adds to the 

variation in TPP estimates and makes the differences between TPPs appear larger than they truly are. In 

addition, noise makes it hard to tell which TPPs are better or worse. If estimated TPP differences are 

very noisy, then a TPP’s position at the top or bottom of the rankings may have more to do with random 

estimation error than with true quality, and policies based on TPP rankings will be arbitrary and 

ineffective.  

A third condition for effective TPP accountability is that we must be able to identify with 

confidence the individual TPPs that are better or worse than average. Singling out good and bad TPPs is 

not a trivial matter. It is possible to accept the global hypothesis that TPPs differ in their effects, and yet 

remain uncertain about which individual TPPs are better or worse. Noise in the estimated TPP 

differences is just one problem. Another problem is multiple tests (Hsu, 1996). We can test each TPP 

estimate for significance, but if we conduct multiple hypothesis tests at a significance level of .05, then 

purely by chance we would expect to conclude that 5 of the nearly 100 TPPs in Texas differ 
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significantly from the average—even if all were truly identical. To avoid basing policy decisions on 

random chance, it is necessary to correct for multiple tests. This correction will inevitably reduce the 

number of TPPs that appear to be different. 

In short, the potential of a TPP accountability system hinges on the three questions in our title:  

1. How big are the teacher quality differences between TPPs?  

2. How reliably can those differences be estimated?  

3. How confidently can we single out individual TPPs as different? 

The answers to these questions have changed over time. Early TPP evaluations in New York City and 

Louisiana suggested that there were large teacher quality differences between TPPs, and that those 

differences could be reliably detected despite noise in the estimates (Boyd, Grossman, Lankford, Loeb, 

& Wyckoff, 2009; Gansle, Noell, & Burns, 2012a). But more recent TPP evaluations in Missouri and 

Washington state suggested that true teacher quality differences between TPPs were quite small 

(Goldhaber, Liddle, & Theobald, 2013; Koedel, Parsons, Podgursky, & Ehlert, 2015)—in fact 

indistinguishable from zero in some analyses (Koedel, Parsons, et al., 2015). The Missouri evaluation 

estimated that most of the variation between TPP estimates consisted of noise rather than true 

differences in teacher quality (Koedel, Parsons, et al., 2015). No TPP evaluation has considered the 

problem of multiple tests. 

While it is possible that the differences between TPPs are larger in some states than in others, it is 

also possible that the divergent conclusions of past TPP evaluations were due in part to methodological 

decisions. Past research has highlighted the sensitivity of TPP estimates to decisions about which 

covariates to include, whether to include school fixed effects (FEs), and how to cluster standard errors 

(SEs) (Koedel, Parsons, et al., 2015; Lincove, Osborne, Dillon, & Mills, 2014; Mihaly, McCaffrey, Sass, 

& Lockwood, 2013). There are further modeling issues, such as whether to include random effects (REs) 
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at the teacher or school level (e.g., Gansle et al., 2012a). Once a model has been fit, the methodological 

decisions are not over. There remain a variety of methods that can be used to assess how much noise is 

present in the estimates, adjust for it, and address the issue of multiple tests. 

In this article, we use an exceptionally large and diverse Texas dataset to estimate teacher quality 

differences between TPPs. We compare a variety of models, with clusters and random effects at various 

levels, and we compare a variety of methods for estimating the presence, size, and reliability of TPP 

differences.  

We find that TPP point estimates are fairly robust to modeling decisions, but SE estimates are 

more sensitive and can be biased and volatile. While SE estimates are necessary for some purposes, we 

show that some methods can ignore the SE estimates and use the point estimates alone to estimate the 

variance that is due to true differences between TPPs and the variance that is due to noise. We also 

demonstrate graphical methods that can make the problems of noise and multiple tests more salient 

when TPP estimates are presented to policy makers.  

In every plausible analysis, we find that the teacher quality differences between TPPs are small, 

and that estimates of those differences consist mostly of noise, even in large TPPs. We also find that few 

if any TPPs can be confidently flagged as different from average after adjustments are made for multiple 

tests. These results suggest that TPP accountability systems have very limited potential to improve 

student achievement (at least in the short run). In addition, careless use of TPP estimates can lead policy 

makers to make decisions about TPPs that are both arbitrary and ineffective. 

2 Data  

We use data from the Texas Education Agency (TEA) to estimate teacher quality differences 

between TPPs using student test scores in the spring of 2011. Although some Texas school districts had 
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previously linked teachers to students, 2011 was the first year for which TEA linked students to teachers 

statewide. 

As the second largest U.S. state, Texas offers exceptional statistical power to detect even small 

TPP effects. The population of Texas exceeds the populations of Louisiana, New York City, Missouri, 

and Washington state combined. Table 1 shows that even a single year of Texas data, limited to 1st-3rd 

year teachers, has over 6,000 math teachers with nearly 300,000 students and nearly 5,000 reading 

teachers with over 200,000 students. If it is challenging to estimate TPP effects reliably in Texas, we 

may assume that it would be even more challenging in the 48 states that are smaller. A mid-sized state 

like Missouri, for example, would take five years to accumulate the sample size that we get from one 

year in Texas.  

The data include math teachers from 95 TPPs and reading teachers from 92 TPPs. Texas TPPs are 

diverse in both size and approach. The largest TPP had 1,067 math teachers and 823 reading teachers in 

our data; the smallest TPP contributed only 3 reading teachers. Although many Texas TPPs are 

traditional programs run out of colleges and universities, the state’s four largest TPPs are alternative 

TPPs, three of which are run for profit. Other alternative TPPs are run by independent school districts 

and regional educational service centers established by the state.  

2.1 Test scores 

Our dependent variables are high-stakes reading and math tests known as the Texas Assessment of 

Knowledge and Skills (TAKS). Texas students were required to take the TAKS in the springs of 2010, 

2011, and before. The reading TAKS was given in 3rd-9th grades, and the math TAKS was given in 3rd-

10th. TAKS was developed by Pearson Learning, which scaled scores using a one-parameter IRT model 

(DeMars, 2010). TAKS content was aligned with the state curriculum, and TAKS scores were more than 
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80% reliable and correlated positively with course grades (Texas Education Agency, 2011). We 

standardized TAKS scores within grade, and subject to facilitate interpretation.1  

2.2 TPPs and other teacher variables 

All student test scores were linked to the teacher who taught the tested subject in the year of the 

test. Students’ math scores were linked to their math teacher, and their reading scores were linked to 

their reading teacher. In elementary school, a student’s math and reading teacher were typically the 

same; in middle and high school, they were typically different.  

Teachers were linked to the TPP that certified them in the tested subject. In our math model, 

teachers were linked to the TPP that certified them to teach math, and in our reading model, teachers 

were linked to the TPP that certified them to teach reading. 4th-8th grade teachers who were certified as 

“generalists” were treated as though they were certified to teach both math and reading. Teachers who 

were not certified in math, in reading, or as generalists were dropped from the analysis. 

In addition to a teacher’s TPP, our analysis included indicators for whether each teacher was in 

their first, second, or third year of teaching. This control is important because teachers improve with 

early experience (Papay & Kraft, 2015; Wiswall, 2013), and the distribution of teacher experience may 

be different for new and expanding TPPs than it is for older, established TPPs. Because TPP effects fade 

with time (Goldhaber et al., 2013), Texas law does not hold TPPs accountable for teachers after three 

years in the classroom (Texas State Legislature, 2009). We therefore excluded from our analysis 

teachers with more than three years’ experience, as well as a few teachers who were certified before 

2005 but started teaching more recently. 

2.3 Student variables 

Our models control for student-level covariates, including gender, race/ethnicity, limited English 

proficiency (LEP), and economic disadvantage (ED, which TEA defines as qualification for school meal 
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subsidies or other public assistance). We also coded variables summarizing the cumulative number of 

years that a student spent in ED or LEP status. Other student variables included indicators for special 

education status and the setting in which a special education student received instruction (mainstream or 

separate); indicators for whether the student had skipped or repeated a grade in the past 2 years; a 

measure of absenteeism, defined as the percentage of school days a student attended the school where 

they were tested; and two measures of mobility between schools: the number of schools in which the 

student was enrolled over the past four years, and the percentage of school days that the student was 

enrolled at their current school during the year of the test.  

2.4 Classroom, school, and district variables 

In addition to student variables, student test scores can be influenced by peer, classroom, school, 

and district characteristics that are beyond a teacher’s control. To capture those influences, we coded a 

number of classroom, school, and district variables. At the classroom level, we calculated the class size 

and the percentage of students who were Hispanic, African American, ED, LEP, or in special education. 

We also calculated the average score of each classroom’s students on the prior year’s reading and math 

tests.  

At the school level, we calculated the percentage of students who were ED, LEP, Hispanic, 

African American, or in special education, as well as the percentage of students who were referred for 

disciplinary problems in the previous year. We included indicators for whether the school was rural or 

suburban rather than urban, and an indicator for charter schools. To measure staff stability, we 

calculated the school’s annual teacher turnover rate and the number of different principals who led the 

school over the past four years. Finally, we included the percentage of the schools’ students who passed 

state reading and math tests, as well as indicators for how the school was rated in the state’s 
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accountability system (exemplary, recognized, acceptable, unacceptable, with unrated as the omitted 

category). To avoid endogeneity, we lagged school pass rates and ratings by one year. 

At the district level, we used the percentage of the district’s budget that came from state rather than 

local funds. In Texas, as in many other states, state funding per pupil is higher in low-income districts 

(Corcoran, Evans, Godwin, Murray, & Schwab, 2004). We also included indicators for how the district 

was rated in the state’s accountability system (exemplary, recognized, acceptable, unacceptable, with 

unrated as the omitted category). To avoid endogeneity, we lagged the district rating by one year. 

3 Methods 

3.1 Model 

We fit a lagged-score value-added model, which regresses each student’s test scores on their prior 

scores, an indicator for each TPP, and covariates. Lagged-score models are increasingly popular for 

estimating teacher value-added, and can easily be extended to estimate the average value-added of 

teachers from different TPPs. The econometric justification for a lagged-score model is that lagged 

scores proxy for the cumulative effects of prior school and non-school inputs, and therefore adjust for 

nonrandom assignment of students to teachers from different TPPs (Guarino, Reckase, & Wooldridge, 

2014; Koedel, Mihaly, & Rockoff, 2015). Although the econometric assumptions of the lagged-score 

model are likely not perfectly met, simulations suggest that lagged-score models are more robust to 

nonrandom assignment than several other value-added models (Guarino et al., 2014). In addition, 

empirical results suggest that, at least in some data, lagged-score models can estimate teacher value-

added with little bias (Chetty, Friedman, & Rockoff, 2014; Koedel, Mihaly, et al., 2015), although this 

claim has been challenged (Rothstein, 2014). 

Our model for value added to reading scores is 
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ܴ݁ܽ݀௬௜ ൌ હ	ࡼࡼࢀ௧ ൅	ߚଵܴ݁ܽ݀௬ିଵ,௜ ൅ ௬ିଵ,௜݄ݐܽܯଶߚ
൅	ߚଷܴ݀ܽ݁ݔܽܯ௬ିଵ,௜ ൅ ௬ିଵ,௜݄ݐܽܯݔܽܯସߚ
൅	ࢼ૞࢚࢔ࢋࢊ࢛࢚ࡿ௜ ൅ 	௖࢓࢕࢕࢙࢙࢘ࢇ࢒࡯૟ࢼ
൅ࢼૠ࢘ࢋࢎࢉࢇࢋࢀ௧ ൅ ௦࢒࢕࢕ࢎࢉࡿૡࢼ ൅ ௗ࢚ࢉ࢏࢚࢙࢘࢏ࡰૢࢼ
൅݁௜ 

(1),

and our model for math scores is the same with ݄ݐܽܯ௬௜ as the dependent variable. The structure of the 

error term ݁௜ can be modeled in several ways which we will discuss later. 

The dependent variable ܴ݁ܽ݀௬௜ (or ݄ݐܽܯ௬௜) represents the standardized score of individual 

student i on the reading (or math) test given in year y=2011. The lagged scores ܴ݁ܽ݀௬ିଵ,௜ and ݄ݐܽܯ௬ିଵ,௜ 

are the same student’s standardized scores on tests given in the prior year y–1=2010. We use lagged 

scores from two different subjects to reduce bias in estimating teacher value-added (Koedel, Mihaly, et 

al., 2015). Using longer lags—e.g., scores from years y–2 and y–3—may reduce bias as well (Koedel, 

Mihaly, et al., 2015), but it also introduces missing-data problems since many students lack scores at 

longer lags. In addition, since state testing begins in third grade, it is not possible to include lags of more 

than one year in the 4th-grade model, or lags of more than two years in the fifth-grade model. To adjust 

for ceiling effects, the model includes indicator variables ܴ݀ܽ݁ݔܽܯ௬ିଵ,௜ and ݄ݐܽܯݔܽܯ௬ିଵ,௜ to flag the 

3.5 percent of students who achieved the maximum possible score on the 2010 test. Other regressors 

include vectors of student, classroom, teacher, school, and district covariates, which we described in the 

Data section.  

௧ is a column vector of indicators representing the P TPPs, and હࡼࡼࢀ ൌ ሾߙଵ …				ଶߙ  ௉ሿ is a rowߙ

vector representing the average value-added by teachers from each TPP. Because the model has an 

indicator for every TPP, it has no intercept, since an intercept would be collinear with the vector ࡼࡼࢀ௧. 

In effect, each TPP has its own intercept. As a comparison to the TPP model in (1), we also fit a no-TPP 

model that had a single intercept and no TPP indicators. 
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We fit the models separately to each grade and to all grades together. In the all-grade model, we 

included grade indicators and let them interact with every regressor (except for the TPP indicators). 

These interactions allow for the possibility that the covariates had different coefficients in different 

grades. Similar all-grade TPP estimates can be obtained by averaging single-grade TPP estimates across 

grades. 

3.2 Estimates and contrasts 

From the TPP model, we get estimated TPP coefficients ߙො௣, p=1,…,P, as well as contrasts Δߙො௣ 

which are defined as the difference between an individual TPP coefficient ߙො௣ and the mean coefficient. 

The contrast vector Δߙො ൌ ሾΔߙଵ …Δߙ௉ሿ has a covariance matrix ܸ whose diagonal terms are squared 

SEs: ݏ௣ଶ ൌ   ො௣ሻ.2ߙଶሺΔܧܵ

Some statistics center contrasts Δߙො around the simple mean ߙത of the coefficients. Other statistics 

center student-weighted contrasts Δߙො௡ around a mean ߙത௡ that weights each TPP coefficient ߙො௣ by the 

number of students taught by teachers from that TPP. Other statistics use precision-weighted contrasts 

Δߙො௦ଶ centered around use a mean ߙത௦ଶ that weights each coefficient by the inverse ݏ௣ିଶ of its squared SE.  

3.3 Clustered SEs  

A vital issue is that the residuals ݁௜ in equation (1) are correlated among students who are taught 

by the same teacher. If this correlation is ignored, then the SEs of the TPP estimates will be 

underestimated (Koedel, Parsons, et al., 2015). 

One way to account for within-teacher correlation is to estimate teacher-clustered SEs (Koedel, 

Parsons, et al., 2015). Teacher-clustered SEs are estimated by calculating residuals around the OLS 

estimates, estimating the within-teacher covariance matrix of the residuals, and using that matrix to 

estimate the SE.  
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It may also seem plausible to cluster at a level higher than the teacher—such as the school, district, 

or TPP. In fact, it is common advice to cluster at the highest level possible (Cameron & Miller, 2015). 

Since clustered SEs can estimate arbitrary correlation structures, the idea is that clustered SEs at higher 

levels (e.g., schools, districts, or TPPs) will pick up not just correlations at higher levels but correlations 

at lower levels (e.g., teachers) as well.  

There are some potential problems with using clustered SEs. One problem is that, if the residuals 

݁௜ are correlated, then OLS point estimates, though possibly unbiased, are not fully efficient. Another, 

more serious problem is that, if there are fewer than 40 clusters, clustered SEs are biased downward; that 

is, they tend to underestimate the true SEs (Cameron & Miller, 2015). In addition, with few clusters, 

clustered SEs are extremely volatile (a.k.a., variable, noisy, inefficient) in the sense that they fluctuate 

dramatically from one sample to another (Bell & McCaffrey, 2002). 

In a TPP model, the bias and volatility of clustered SEs do not depend on the total number of 

clusters; instead they depend on the number of clusters in each TPP. Intuitively, each TPP’s estimate 

depends primarily on clusters in that TPP, and the fact that one TPP has, say, 100 clusters does little to 

improve the SE for another TPP that has 5 clusters. This observation is not widely appreciated, but it is 

implicit in findings that the bias of clustered SEs is worse with skewed regressors—such as TPP 

dummies that are equal to one for only a small percentage of observations (Imbens & Kolesar, 2012; 

Pustejovsky & Tipton, 2016). 

What this means is that, while teacher-clustered SEs may be reasonably accurate for large TPPs, 

teacher-clustered SEs will be biased and volatile for TPPs with fewer than 40 teachers. With fewer than 

40 teachers, school- or district-clustered SEs will also be biased and volatile, since if a TPP has fewer 

than 40 teachers, those teachers will certainly be in fewer than 40 schools and fewer than 40 districts. 
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TPP-clustered SEs may be especially biased and volatile, since the SE of each TPP coefficient is 

estimated from a single cluster. 

To address the bias and volatility of clustered SEs, a variety of methods have been developed, 

including bias reduced linearization and the wild cluster bootstrap (Bell & McCaffrey, 2002; Cameron, 

Gelbach, & Miller, 2008). We investigated these methods, but they did not solve our problem. First, as a 

practical matter, the current software implementations could not handle a dataset and model as large as 

ours. Second, even if the software could handle our data, it would not eliminate the problems of bias and 

volatility in SEs. The wild cluster bootstrap corrects significance levels but does not reduce bias or 

volatility in SEs (Cameron et al., 2008). Bias reduced linearization reduces bias but increases volatility 

(Bell & McCaffrey, 2002).  

3.4 Teacher random effects 

An alternative to clustered SEs is to model the correlated errors with teacher random effects (RE). 

A teacher RE model splits the residual into two components: ݁௜ ൌ ௧ݎ ൅  ௧ is the teacher REݎ ௜, whereݑ

and ݑ௜ is the student residual. The RE model makes more assumptions than an OLS model with 

clustered SEs. While the clustered SE model makes no assumptions about the within-teacher covariance 

matrix, the teacher RE model assumes that, within teachers, ݁௜ has a simple exchangeable correlation 

structure with an intraclass correlation of ߩ ൌ ௥ଶߪ௥ଶ/ሺߪ ൅  ௧ݎ ௨ଶ are the variances ofߪ ௥ଶ andߪ ௨ଶሻ, whereߪ

and ݑ௜. Typically RE models also assume that ݎ௧ has a normal distribution, but RE estimates are often 

robust to non-normality (McCulloch & Neuhaus, 2011). 

The choice between teacher REs and clustered SEs hinges on the RE assumptions and the size of 

the TPPs. If the RE assumptions are met, even approximately, then RE point estimates will be more 

efficient than OLS estimates, and RE SEs will be less biased (and less volatile) than clustered SEs, at 
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least in small TPPs (Green & Vavreck, 2008). On the other hand, if the RE assumptions are badly 

violated, then OLS estimates with clustered SEs may be preferable, at least for large TPPs. 

3.5 School random effects vs. school fixed effects 

In addition to teacher REs, we can add school REs and estimate a two-level hierarchical linear 

model (HLM). The inclusion of school REs may improve TPP coefficient estimates since much of the 

TPP variance lies between rather than within schools. A two-level HLM was used to estimate TPP 

coefficients in Louisiana (Gansle et al., 2012a).3  

An alternative to school REs are school fixed effects (FEs). School FEs have the advantage of 

controlling for unobserved school-level covariates, but school FEs can be nearly collinear with some 

teacher TPPs (Mihaly et al., 2013). Because of the collinearity introduced by school FEs, some TPP 

estimates are identified only by a subset of new (i.e., 1st-3rd year) teachers who work in the same schools 

as new teachers from other TPPs. Although few cases are actually dropped from the regression, the 

number of teachers and schools that identify the coefficient of some TPPs can be very small. In the 

extreme, a TPP coefficient may not be estimable at all; more commonly, it will be estimable, but its SE 

will be very large. Bias can also occur if the teachers and schools that identify a particular TPP 

coefficient are not representative of the larger population. 

3.6 Multiple comparisons 

It is common practice to plot all the TPP contrasts Δߙො௣ with ordinary pointwise CIs (Boyd et al., 

2009; Gansle et al., 2012a). And it is common to eyeball the CIs to see which ones do not cover zero, 

and interpret those TPPs as significantly different from the mean. This is equivalent to conducting P 

hypothesis tests. 

The problem with this approach is that it fails to correct for multiple comparisons (Hsu, 1996). In 

Texas, for example, there are approximately P=100 different TPPs, and if we test each of them using a 
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.05 significance level (or a 95 percent CI), then we would expect to conclude that approximately five 

differ significantly from the average—even if all are in fact identical. The problem of multiple 

comparisons is exacerbated if we graph 68 percent CIs that extend only one SE in each direction (Boyd, 

Grossman, Lankford, Loeb, & Wyckoff, 2009; Gansle, Noell, & Burns, 2012a). If even 10 identical 

TPPs are compared using 68 percent CIs, there is a 98 percent chance (1–.6810) of erroneously 

concluding that at least one TPP differs significantly from the average. 

The simplest adjustment for multiple comparisons is the Bonferroni correction, which tests each 

hypothesis at a significance level of .05/P or, equivalently, constructs CIs with a confidence level of (1–

.05/P)x100 percent. This keeps the familywise error rate to five percent, meaning that, if all TPPs were 

identical, there would be approximately a five percent chance of erroneously concluding that at least one 

TPP differed from the average. 

The Bonferroni correction is conservative, and less conservative corrections are available, 

including one that is tailored for our exact problem of making multiple comparisons with the mean 

(Fritsch & Hsu, 1997). But if the numbers of TPPs and teachers are large, as they are in Texas, the exact 

correction is practically indistinguishable from the Bonferroni correction, which is much easier to 

calculate. For example, with ܲ ൒ 20 TPPs and at least five teachers per TPP, the 95 percent Bonferroni 

intervals are only 0.3 percent wider than the exact intervals (Fritsch & Hsu, 1997). Our results use the 

Bonferroni correction; using the exact correction would not visibly change the results. 

3.7 Definitions: Heterogeneity and reliability, homogeneity and the null distribution 

The differences among the TPP point estimates are due partly to true heterogeneity between 

teachers from different TPPs, and partly to noise, or error in the estimates. The variance of the TPP 

estimates ߙො௣ can be decomposed as follows 
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ܸ൫ߙො௣൯ ൌ ߬ଶ ൅  ଶ (2)ߪ

where ߬ଶ ൌ ܸ൫ߙ௣൯ is the heterogeneity variance and ߪଶ ൌ ܧ ቀܸ൫ߙො௣ െ  ௣൯ቁ is the average variance ofߙ

the estimation errors. The fraction of variance in ߙො௣ that is due to heterogeneity rather than error is 

ߩ ൌ
߬ଶ

߬ଶ ൅ ଶߪ
 (3). 

We call ߩ the reliability of the estimates ߙො. Note that, for a given amount of estimation error, more 

heterogeneous estimates will also be more reliable. 

If there is no heterogeneity, then the TPPs are homogeneous and their estimates are completely 

unreliable; they differ from one another only because of estimation error. The null hypothesis of 

homogeneity can be defined in several equivalent ways: 

:଴ܪ ଵߙ ൌ ଶߙ ൌ ⋯ ൌ ௉ߙ
or	ܪ଴: ߬ଶ ൌ 0
or	ܪ଴: ߩ ൌ 0 

(4) 

Under H0, the estimates Δߙො௣ would still vary because of estimation error. The distribution of 

estimates under H0 is the null distribution ࣞ଴, and we can describe ࣞ଴ as follows. Under H0, each Δߙො௣ 

would have an asymptotic normal distribution with a mean of zero and a variance estimated by ̂ݏ௣ଶ, 

p=1,…,P. It follows that ࣞ଴ is an equal mixture of P independent4 normal distributions with means of 

zero and different variances. We approximate the null distribution using the following procedure. For 

the pth TPP, the null distribution is ܰ൫0,  ௣ଶ൯, from which we draw the 1st through 99th percentilesݏ̂

ሼݍଵ,௣, … ,  ଽଽ,௣ሽ. Then for all the TPPs together, we approximate the null distribution ࣞ଴ with a setݍ

containing all the percentiles that we have drawn for the individual TPPs—i.e., 	 ෡ࣞ଴ ൎ

ሼݍଵ,ଵ, … , ,ଽଽ,ଵݍ ,ଵ,ଶݍ … , ,ଽଽ,ଶݍ … ,ଵ,௉ݍ … ,   ଽଽ,௉ሽ.5ݍ

Under H0, the TPP contrasts Δߙො௣ would approximate the (P+1)-quantiles from ෡ࣞ଴ (e.g., the deciles 

if P=9, or the percentiles if P=99). We call these the null quantiles, or noise quantiles. By plotting the 
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noise quantiles over the observed Δߙො௣ values, we can visually compare the observed distribution to the 

noise distribution. If the observed distribution and the noise distribution are similar, we can conclude 

that most of the variation in the estimates is due to noise. If the observed distribution is more dispersed 

than the noise distribution, we have visual evidence that there are real teacher quality differences 

between TPPs. 

3.8 Tests and estimates of heterogeneity and reliability 

How can we test the null hypothesis of homogeneity and estimate the heterogeneity variance ߬ଶ 

and the reliability ߩ? We review the statistics that have been used previously and point out that they are 

sensitive to biases in the SE estimates. We then propose new statistics that do not require SE estimates at 

all. 

3.8.1 Homogeneity tests 

One way to test the null hypothesis of homogeneity is with a likelihood ratio statistic ܴܮ that 

compares the log-likelihoods ℓ of the TPP and no-TPP models: 

ܴܮ ൌ 2ሺℓ்௉௉ െ ℓ௡௢்௉௉ሻ (5) 

Under the null hypothesis of homogeneity, LR follows a ߯௉ିଵ
ଶ  distribution if the sample is large and the 

model is correctly specified. The LR test is asymptotically most powerful, but it can only be used with 

maximum likelihood (ML) estimates, and even then it cannot be used with clustered SEs, because the 

likelihood ignores the clustering. In addition, if we want estimates and SEs from a subset of TPPs, such 

as the large ones, we can only calculate LR if we re-estimate the model on that subset. 

A simpler test statistic is Cochran’s Q, which compares the squared contrasts to their squared 

SEs (Cochran, 1954; Koedel, 2009; Koedel, Parsons, et al., 2015): 
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ܳ ൌ෍
Δߙො௦ଶ,௣

ଶ

௣ଶݏ̂

௉

௣ୀଵ

 
(6) 

Q has the same null distribution as ML, but Q can be used with any type of estimate (ML, GLS, etc.) 

with or without clustered errors. Q can also be calculated from any set of estimates and SEs from a 

single model run. There is no need to compare the TPP and no-TPP models, and no need to rerun the 

model on a subset of TPPs. 

A related test is the Wald statistic ܹ ൌ Δߙො௡் ෠ܸିଵΔߙො௡, which is like Q except that W uses the whole 

covariance matrix ෠ܸ  while Q only uses the diagonal elements (the squared SEs) (Koedel, 2009; Koedel, 

Parsons, et al., 2015). In our TPP model, W and Q are typically very similar because the off-diagonal 

elements of ෠ܸ  are close to zero.6 In some situations, though, we found that W was less robust than Q,7 so 

we omit W from our results.  

3.8.2 Reliability and heterogeneity estimates 

Reliability can be estimated by  

ොொߩ ൌ 1 െ
ܲ െ 1
ܳ

 (7) 

 ,ොொ is called I2 in meta-analysis, where it is often reported with a test-based CI (Higgins & Thompsonߩ

ොொ can be multiplied by the variance of the point estimates ෠ܸߩ	 .(2002 ൫ߙො௣൯ to get an estimate of the 

heterogeneity variance (Koedel, 2009): 

߬̂ொ
ଶ ൌ ොொߩ ෠ܸ൫ߙො௣൯,where	 ෠ܸ൫ߙො௣൯ ൌ

1
ܲ െ 1

෍൫ߙො௣ െ ൯ߙ
ଶ

 (8) 

Another estimate of the heterogeneity variance is the difference between the variance of the TPP 

point estimates and the variance of the null distribution.  

߬̂ு
ଶ ൌ ෠ܸ൫ߙො௣൯ െ ෠ܸሺࣞ଴ሻ,where ෠ܸሺࣞ଴ሻ ൌ

1
ܲ
෍̂ݏ௣ଶ  (9) 
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(Aaronson, Barrow, & Sander, 2007; Cochran, 1954; Hedges, 1983). ߬̂ு
ଶ  can be divided by the variance 

of the point estimates to get another estimate of reliability: 

ොுߩ ൌ ߬̂ு
ଶ/ ෠ܸ൫ߙො௣൯  (10) 

The estimate ߬̂ு
ଶ  is unbiased, but ߩොொ has a slight negative bias if the number of TPPs is small (von 

Hippel, 2015). Any heterogeneity or reliability estimate can be negative, and it is customary to round 

negative estimates up to zero. Rounding up yields a positive bias if the true heterogeneity is close to 0 

and the number of TPPs is small (von Hippel, 2015). 

Another heterogeneity estimator is ߬̂ா஻
ଶ , which is the variance of the empirical Bayes (EB) 

contrasts (e.g., Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2009; Goldhaber et al., 2013; Koedel, 

Parsons, et al., 2015). The EB contrasts are obtained by multiplying each ordinary contrast Δߙො௣ by an 

estimate of its reliability (Merrmann, Walsh, Isenberg, & Resch, 2013). 

Unfortunately, ߬̂ா஻
ଶ  has a substantial bias even if the number of TPPs is large. To see the bias 

simply, suppose that every TPP contrast Δߙො௣ has known reliability 8.ߩ Then the EB contrasts are ߩΔߙො௣ 

with variance ߬̂ா஻
ଶ ൌ ଶߩ ෠ܸሺΔߙො௣ሻ. However, the true heterogeneity variance is ߬ଶ ൌ ො௣ሻ. So ߬̂ா஻ߙሺΔܸߩ

ଶ  

underestimates ߬ଶ by a factor of ߩ. We do not recommend ߬̂ா஻
ଶ  and will not present it in our Results. 

3.8.3 Using TPP point estimates 

The statistics above rely on SE estimates, but SEs are tricky to estimate, and some popular SE 

estimators are biased, as we will see.  

We now propose alternative statistics that do not require accurate SE estimates. These statistics 

work by comparing different point estimates of the TPP coefficients. From our models we get TPP point 

estimates for 2 different subjects (reading, math) and 6-7 different grades (4th-9th in reading, 4th-10th in 

math). In different data, we could also get TPP point estimates for different school years or for different 

cohorts of teachers. 
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If we have two sets of independent and exchangeable TPP estimates, then the correlation between 

them estimates the reliability ߩ, and the covariance estimates the heterogeneity variance ߬ଶ. If the 

correlation (and covariance) are significantly greater than zero, then we can reject the null hypothesis of 

homogeneity. 

If we have more than two sets of TPP estimates, then the bivariate correlation generalizes to the 

intraclass correlation, which can be estimated using analysis of variance (ANOVA). With J independent 

estimates for each TPP, the ANOVA model is 

Δߙො௣௝ ൌ Δߙ௣ ൅  ,௣௝ (11)ݑ

where Δߙො௣௝ is the jth estimated contrast for TPP p in grade g, Δߙ௣ is the true contrast, and ݑ௣௝ is random 

estimation error. The null hypothesis of homogeneity is tested by the ANOVA F statistic. Standard 

ANOVA formulas9 (Fisher, 1925) give the between-group variance, which we call ߬̂ூ஼஼
ଶ  and interpret as 

an estimate of the heterogeneity variance. Standard formulas also give the intraclass correlation r, which 

estimates the reliability of a single TPP estimate. If J TPP estimates are averaged together—for 

example, if we average TPP estimates across J grades—then the reliability of the average is estimated 

by (Winer, Brown, & Michels, 1991) 

ො୍େେߩ ൌ
ݎܬ

1 ൅ ሺܬ െ 1ሻݎ
 (12) 

These formulas assume that the TPP estimates are independent and exchangeable. If estimates are 

not independent, then the formulas will overestimate both heterogeneity and reliability, and we will 

reject the null hypothesis of homogeneity more often than we should. If estimates are independent but 

not exchangeable, then we will underestimate reliability, and we will reject homogeneity less often than 

we should. 

The assumptions of independence and exchangeability are most plausible when we are comparing 

the same subject taught by teachers in similar grades. For example, 4th and 5th grade math teachers are 
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independent and exchangeable, while 4th and 10th grade math teachers are independent but may not be 

exchangeable if different skills are needed to teach 4th vs. 10th grade math. 

Assumptions can be violated in other situations. For example, independence is violated if we 

correlate TPP estimates across two different school years, but many of the teachers are the same in both 

years. If we correlate reading and math estimates, then the estimates may be independent but they are 

not exchangeable if TPPs are more heterogeneous in math than in reading, or if some TPPs’ reading 

teachers are better or worse than their math teachers. 

The assumptions of independence and exchangeability may seem strict, but they are not limited to 

the ANOVA approach described above. Any heterogeneity estimator assumes independence and 

exchangeability when it combines data across different grades, subjects, or cohorts.  

4 Results 

4.1 Illustrative TPP estimates 

Figure 1 displays caterpillar plots of TPP contrasts from our all-grade teacher RE models, with 

95 percent pointwise CIs and a reference line at the average of zero. We illustrate the noisiness of the 

estimates by overlaying the null distribution, which shows what the distribution of TPP contrasts would 

look like if there were no true differences between TPPs and nothing but estimation error were present. 

The null distribution is barely less dispersed than the observed distribution, suggesting that the observed 

distribution of TPP contrasts consists primarily of noise, with little signal. 

Both the observed distribution and the null distribution have a sideways S shape. In the value-

added community, a sideways S is sometimes interpreted as meaning that most TPPs are very similar, 

while a few, in the tails, are very bad or very good. But clearly that interpretation is wrong since the null 

distribution, which assumes no TPP differences, also has an S shape. The reason for the null 
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distribution’s S shape is that estimation error has a normal mixture distribution, and the cumulative 

distribution function for a normal mixture is S-shaped.  

To decide whether a TPP is significantly better or worse than average, it is common to plot a 95 

percent pointwise CI around each estimate. Figure 1 does this, but the practice is misleading. It is 

tempting to infer that a TPP is different from average if its pointwise CI does not cross zero, but this is 

not necessarily the case. Even if there were no true differences between TPPs, 5 percent of 95 percent 

pointwise CIs—or about 9-10 of the 187 intervals in Figure 1—would not cross the reference line. This 

is the problem of multiple comparisons.  

To correct for multiple comparisons, Figure 1 includes 95 percent Bonferroni CIs that adjust for 

the fact that we have 95 TPPs in math and 92 in reading. Looking for Bonferroni intervals that do not 

cross the reference line, we conclude that no TPPs are significantly different from average in math, and 

only one TPP is significantly different (better) than average in reading.10  

4.2 Model sensitivity 

The estimates in Figure 1 came from a teacher RE model, and some of our conclusions would 

change if we fit a different model. Table 2a summarizes the distribution of TPP point estimates and SE 

estimates under different models.  

The model with school FEs (and teacher REs) appears to produce the worst estimates. Its SEs are 

about 50% larger on average, and its point estimates are about 50% more variable (according to the SD) 

than the point estimates and SEs obtained from other models. School FE estimates have very low 

correlations (.14-.16) with other estimates in reading, and only moderate correlations with other 

estimates in math (.50-.60). There is one TPP for which the school FE model fails to provide an estimate 

at all. These are all symptoms of the fact that school FE estimates are identified by a limited and 

possibly unrepresentative sample of schools and teachers (Mihaly et al., 2013).  
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OLS point estimates are more efficient, but it is tricky to estimate SEs under OLS. OLS SE 

estimates are too small if they are not clustered (Koedel, Parsons, et al., 2015), and SE estimates are 

even smaller if they are clustered at the TPP level, according to Table 2a. TPP-clustered SEs are biased 

downward because they have only one cluster for each TPP, and about 40 clusters per TPP are needed to 

avoid downward bias (Cameron & Miller, 2015). SEs are much larger if they are clustered at the teacher, 

school, or district level, but even these SEs have some downward bias for small TPPs with fewer than 40 

teachers, schools, or districts. Notice that the district-clustered SEs are slightly smaller than the school- 

or teacher-clustered SEs. This is because there are fewer districts than schools or teachers. 

SE estimates from a teacher RE model are slightly larger, and probably less biased, than SE 

estimates from an OLS model with teacher clustering (or school or district clustering). Figure 2 shows 

how TPP size affects SE estimates with teacher clustering vs. teacher REs. With teacher REs, SE 

estimates decrease smoothly as the inverse square root of the number of teachers. Teacher-clustered SEs 

are similar when the number of teachers is greater than 40. But with fewer than 40 teachers, teacher-

clustered SEs are too small on average and extremely volatile, with no smooth relationship to TPP size. 

This reflects the volatility and downward bias of clustered SEs when there are few clusters (Bell & 

McCaffrey, 2002). 

While teacher REs improve the SE estimates, they do not change the point estimates very much. 

Teacher RE point estimates are highly correlated with OLS estimates (.89 in math and.97 in reading), 

and just slightly more dispersed. The estimates also change little if we add school REs to the teacher 

REs. TPP estimates from a model with school and teacher REs are highly correlated (.97-.98) with 

teacher RE point estimates, and slightly less dispersed.  

The last two columns of Table 2a show how many TPPs are estimated to be significantly different 

from the mean (at p<.05). Two patterns are evident. First, if a model underestimates the SEs, it will 
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suggest that a spuriously large number of TPPs differ significantly from the average. The number of 

significant differences is substantially exaggerated under OLS with no clustering and under OLS with 

TPP clustering. The number of significant differences is also slightly exaggerated under OLS with 

district clustering.  

The second pattern is that even if a model produces reasonable SE estimates, we will still overstate 

the number of significant differences if we fail to correct for multiple tests. Consider the model with 

teacher REs. Without correction this model suggests that 10 TPPs differ significantly from the average 

in math, and 11 TPPs differ significantly from the average in reading. But after the Bonferroni 

correction for multiple tests, only 0 TPPs differ significantly from the average in math, and only 1 

differs significantly from the average in reading. 

4.3 Large TPPs 

Table 3b summarizes point estimates, SEs, and significant differences for TPPs with at least 40 

reading or math teachers in our data. These larger TPPs represent only 40-50 percent of the TPPs in 

Texas, but they train 80 percent of the state’s new teachers. Both policy and statistical arguments can be 

made for limiting accountability to large TPPs. From a policy point of view, the decision to shut down 

or expand a large TPP will affect a larger number of students. Statistically, large TPPs have more 

precise point estimates and less danger of bias in SE estimates; in addition, there are fewer large TPPs, 

and this reduces the danger of multiple comparisons.  

Some estimation methods do not improve in large TPPs. School FE estimates are still very 

imprecise and may be biased as well. OLS and TPP-clustered SEs still have a severe downward bias.  

Other estimation methods do improve in large TPPs. In large TPPs, teacher-, school-, and district-

clustered SEs have little bias, and are very similar to SEs from teacher RE models (with or without 

school REs) The correlation between OLS and teacher RE point estimates remains strong in large TPPs 
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(.85 in math, .84 in reading), though not as strong as it was when all TPPs were included. The 

correlation between teacher RE and teacher+school RE models is strong as well (.96 in math, .94 in 

reading).  

Despite the smaller SEs of large TPPs, and despite the fact that a sample limited to large TPPs has 

fewer comparisons to correct for, it remains difficult (but not impossible) to single out specific TPPs as 

significantly different from average. If we apply the Bonferroni correction and limit our attention to the 

teacher RE estimates, only one TPP differs significantly from the average in reading, and only one 

differs significantly from the average in math. It is the same TPP that stands out in both reading and 

math, suggesting that the Bonferroni correction may have helped us to find a TPP that is truly different 

from average. The TPP has an estimated contrast of .07 in both reading and math, though after EB 

shrinkage the contrast shrinks to just .04 in math and .01 in reading. 

4.4 Heterogeneity and reliability 

In light of the previous section’s difficulty highlighting individual TPPs that are significantly 

different, some readers might doubt that there are any teacher quality differences between TPPs at all. 

This section suggests that there are differences, but they are very small and not very reliably estimated. 

Table 3a tests and estimates the heterogeneity and reliability of the contrasts for all TPPs. These 

heterogeneity and reliability estimates are calculated from the SE estimates, so if the SE estimates are 

biased, the heterogeneity and reliability estimates will be biased as well. In particular, if SE estimates 

are too low—as they are under unclustered OLS or under TPP clustering—then estimates of reliability 

and heterogeneity will be too high, and hypothesis tests will reject homogeneity more often than they 

should. For that reason, we give no weight to the OLS or TPP-clustered estimates and relatively little 

weight to the teacher-, school-, or district-clustered estimates unless the TPPs are large. We also give 
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little weight to the school FE estimates, which are very imprecise and possibly biased. Instead, we favor 

the teacher RE estimates, with or without school REs. 

The teacher RE estimates in Table 3a suggest that we can reject the null hypothesis of 

homogeneity; the p values for the Q and LR tests are less than.05. The TPP reading estimates have a 

heterogeneity SD of .02-.03 and are most likely 18 to 33 percent reliable. The TPP math estimates have 

a heterogeneity SD of .04-.05 and are most likely 23 to 40 percent reliable. These estimates are highly 

uncertain, however; the confidence intervals for reliability range from 0 to 52 percent.  

We initially hoped that large TPPs would have more reliable estimates, but they do not. According 

to Table 3b, the large-TPP contrasts are just 18 to 46 percent reliable in math and 0 to 36 percent reliable 

in reading. These low reliabilities occur because, although large TPP contrasts are more precise, they 

also appear to be less heterogeneous. The large TPPs have an estimated heterogeneity SD of just 0.01-

.02 in math and 0-.01 SD in reading. Under the model with teacher REs and school REs, we cannot even 

reject the null hypothesis of homogeneity (p>.05 in both math and reading).  

Again, this summary is based on models with teacher RE and possibly school REs. The models 

with clustered SEs at the school, teacher, or district level tell a similar but not identical story, at least in 

large TPPs. 

Given the sensitivity of SE estimates, it may be helpful to ignore the SEs and estimate reliability 

and heterogeneity by correlating point estimates across grades (see section 3.8.3 in the Methods). The 

point estimates from different models are similar, even when the SE estimates are different. For 

example, OLS point estimates stay the same regardless of how SEs are clustered. And OLS point 

estimates are strongly correlated with teacher RE point estimates, though school FE point estimates are 

different. 
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Table 4a uses the point estimate approach to estimate reliability and heterogeneity. The estimates 

for heterogeneity are low. Across all TPPs, the estimated heterogeneity SD is 0.03 in math and 0.02 in 

reading. Among large TPPs, the estimated heterogeneity SD is .01-.02 in math and .01 in reading. Some 

reliability estimates are low as well; among large TPPs in reading, the reliability estimate is just 10 

percent, and we cannot reject the null hypothesis that there is no reliability at all. The estimates are quite 

consistent across models, with the exception of the school FE models, which we discount because their 

estimates are imprecise and possibly biased. 

5 Conclusion 

5.1 How large are TPP differences? How reliable? Which TPPs are different? 

In the introduction we argued that, for TPP accountability to increase student performance, several 

conditions must be met.  

1. The differences between TPPs must be consequentially large. 

2. It must be possible to estimate those differences reliably. 

3. It must be possible to single out individual TPPs that are better or worse than average.  

We can now assess those conditions by answering the three questions in the title 

Question 1. How large are the differences between TPPs? While most of our results suggest that 

real differences between TPPs exist, the differences are not large. Our estimates vary a bit with our 

statistical methods, but averaging across plausible methods we conclude that between TPPs the 

heterogeneity SD is about .03 in math and .02 in reading. That is, a 1 SD increase in TPP quality 

predicts just a .03 SD increase in student math scores and a .02 SD increase in student reading scores.  

The differences between TPPs are not large in an absolute sense, and also not large when 

compared to other differences between groups of teachers. For comparison, using the same value-added 
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model, we estimate that the average difference between 1st and 2nd year teachers is 0.04 SD in student 

math scores and 0.03 SD in student reading scores. So a 2nd year teacher from an average TPP is 

probably better than a 1st year teacher from a good TPP.  

Question 2. How reliable are TPP estimates? Even if the differences between TPPs were large 

enough to be of policy interest, accountability could only work if TPP differences could be estimated 

reliably. And our results raise doubts that they can. Every plausible analysis that we conducted 

suggested that TPP estimates consist mostly of noise. In some analyses, TPP estimates appeared to be 

about 50 percent noise; in other analyses, they appeared to be as much as 80 or 90 percent noise, despite 

our Texas-sized sample. Even in large TPPs the estimates were mostly noise, because the differences 

between large TPPs, though more precisely estimated, were also smaller than the differences between 

small TPPs.  

It is plausible (though it needs to be assessed empirically) that TPP estimates would be more 

reliable if we had more than one year of data. But if several years of data are required to obtain reliable 

TPP estimates in Texas, what does that imply for other states? A mid-sized state like Missouri would 

require 5 years to accumulate the amount of data that we get from a single year in Texas. 

TPP estimates are sensitive and uncertain. The estimates are noisy even if we settle on a single 

model, and there is also uncertainty about which model to fit. While all TPP evaluations to date have 

used a lagged-score value-added model, evaluators have made different decisions about clustering, REs, 

and FEs, and we have shown that some of those decisions have major consequences for the resulting 

estimates, especially in small TPPs. In addition, different evaluations have used different sets of 

covariates, and the choice of covariates can change the distribution of TPP estimates as well (Lincove et 

al., 2014).  
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It is possible that some TPP estimates are not just uncertain but also biased. Possible sources of 

bias include model misspecification and nonrandom assignment of TPPs’ teachers to schools and 

students. The biases of lagged-score value-added models are small when compared to differences 

between teachers (Chetty et al., 2014; Koedel, Mihaly, et al., 2015), but the biases may be larger when 

compared to the smaller differences between TPPs.  

Question 3. Which TPPs are different? Even if we focus on estimates from a single model, it 

remains hard to identify which TPPs differ from the average. It is not just that TPP differences are small 

and our estimates of them are uncertain—there is also the problem of multiple comparisons. Before we 

correct for multiple comparisons, many TPPs appear significantly different, but after we correct for 

multiple comparisons, just 0-2 TPPs appear significantly different from the average. If we restrict 

accountability to large TPPs, we have fewer comparisons to make, but it is no easier to detect significant 

differences because the differences between large TPPs, at least in Texas, are very small.  

We can radically reduce the number of comparisons if we combine TPPs and ask broader 

questions, such as whether alternative TPPs produce better teachers than traditional TPPs (Kane, 

Rockoff, & Staiger, 2008), whether for-profit TPPs produce better teachers than nonprofit TPPs 

(Lincove, Osborne, Mills, & Bellows, 2015), or whether TPPs that involve students in teaching practice 

produce better teachers than TPPs that don’t (Boyd et al., 2009). These are interesting questions, but 

from a policy point of view, they are fundamentally different than the accountability problem of 

identifying which individual TPPs are better or worse. For example, even if teachers from alternative 

TPPs were on average better than those from traditional TPPs, we could not justify shutting down all 

traditional TPPs. There might be some traditional TPPs that are excellent. 
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5.2 How general are our results? 

Our finding that there are only small teacher quality differences between TPPs may seem 

surprising at first. After all, TPPs differ substantially both in selectivity and in their approach to teacher 

training. Some TPPs accept only 10 percent of applicants, while others take nearly all comers. Some 

TPPs are 4-year degree programs, while others last as little as 12 weeks. Yet we find only small teacher 

quality differences between TPPs in Texas, and similar results have been obtained in Missouri and 

Washington state (Goldhaber et al., 2013; Koedel, Parsons, et al., 2015). It is a little surprising that 

differences in TPP selectivity and training don’t produce bigger differences in teacher effectiveness. 

Yet results like this are common in education research. In many areas of education, little of the 

variation in individual success lies between institutions. In elementary school, only 20 percent of the 

variation in student test scores lies between schools (Coleman et al., 1966). Among college graduates 

with the same major, only 1 to 9 percent of the variance in log earnings lies between graduates of 

different colleges (Rumberger & Thomas, 1993). Among PhD economists, only 10 percent of the 

variance in research productivity, lies between graduates of different PhD programs (Conley & Önder, 

2014).11 Perhaps we should not be surprised by results suggesting that only 1 to 3 percent of the variance 

in teacher quality lies between teachers from different TPPs (Goldhaber et al., 2013; Koedel, Parsons, et 

al., 2015). And since the total heterogeneity among teachers is .09 to .16 SD in student test scores 

(Staiger & Rockoff, 2010), it stands to reason that the heterogeneity between TPPs would be as small as 

.01 to .03 SD.12 

It is possible that results would be different for different outcome variables. Most TPP evaluations 

have focused exclusively on reading and math scores, although one evaluation also looked at science 

and social studies scores (Gansle, Noell, & Burns, 2012). It would be informative to estimate between-

TPP differences in teacher attrition and in teacher effects on grade retention and graduation rates. In fact, 
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policy often highlights graduation as an outcome that TPPs should be accountable for (Levine, 2006; 

Texas State Legislature, 2009; US Department of Education, 2011).  

5.3 Recommended methods 

Although our results suggest limits on the potential of TPP accountability systems, implementation 

of these systems may continue as the merits of the policy are debated. For evaluators who continue to 

estimate teacher quality differences between TPPs, we have some recommendations and cautions 

regarding which methods to use.  

While TPP point estimates are somewhat similar across models, SE estimates are more sensitive 

and can be biased and volatile. If there are several sets of independent point estimates—e.g., estimates 

from different grades, or estimates in different subjects—then we can ignore the SE estimates and 

estimate heterogeneity and reliability using the point estimates alone. However, we need SE estimates to 

evaluate which TPPs are significantly different from average. 

To estimate SEs, it is essential to account for the correlation between students taught by the same 

teacher. Within-teacher correlation can be modeled using either teacher clusters or teacher REs. Teacher 

clusters and teacher REs give similar SE estimates for large TPPs with at least 40 teachers. For smaller 

TPPs, though, teacher REs are preferable because teacher teacher-clustered SEs are volatile and biased. 

The bias of clustered SEs does not improve if we cluster at the school or district level instead of the 

teacher level, and if we cluster at the TPP level the bias gets much worse.  

When using an RE model, there is a statistical case for adding REs at the school and district level 

as well as the teacher level. These higher-level REs make only a small difference to the TPP estimates, 

but the difference can be large enough to nudge some TPP estimates from significance to insignificance. 

TPP estimates are typically compared using a caterpillar plot, but we argue that traditional 

caterpillar plots are misleading in two ways. First, caterpillar plots rank TPPs by their estimated effects, 
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and it is easy to get the impression that the TPPs are being ranked on quality, even though the estimates 

consist primarily of noise. Traditional caterpillar plots can also mislead users by using ordinary 

pointwise CIs, which are too narrow because they ignore the problem of multiple comparisons. 

To highlight the issues of noise and multiple comparisons, caterpillar plots should use Bonferroni 

CIs and overlay a null distribution that shows what the estimates would look like if only estimation error 

were present and there were no real differences between TPPs. Highlighting noise and correcting for 

multiple comparisons may help to steer policymakers away from unnecessary or counterproductive 

actions such as such as closing an average TPP because a noisy estimate makes it appear worse than it 

is. In addition, cautious analysis can highlight the occasional situation where—despite noise and 

multiple comparisons—we can have confidence that one TPP is better or worse than average.  

 

1 We excluded students who took the “accommodated” TAKS (for special education students) or the Spanish-language 
TAKS in 2010 or 2011. The fraction of students who took the Spanish TAKS is surprisingly small. By 4th grade, only 6 
percent of Texas students took the Spanish reading test, and 3 percent took the Spanish math test. By 5th grade, only 3 
percent took the Spanish reading test, and 1 percent took the Spanish math test. 
2 We obtained both Δߙො and ෠ܸ  using Stata’s postestimation command contrast gw.TPP. An alternative to calculating contrasts 
would be to mean-center all the regressors, including the dummies. 
3 The article by Gansle et al. (2012) describes a model with random effects at the school level and the “teacher/classroom” 
level. The term “teacher/classroom” is ambiguous since a teacher can have more than one classroom. On July 22, 2015, we 
wrote to Gansle about this ambiguity and she replied that, “The random effect was really a teacher effect across one to 
several classes.” 
4 Here we are assuming that the correlations among the estimates are small. As remarked earlier, this assumption is 
reasonable when W is similar to Q.  
5 We implemented this approximation procedure in a few lines of Stata code, and compared the results to quantiles from the 
exact distribution  ࣞ଴ which we calculated using Mathematica software. The results were visually indistinguishable.  
6 In an OLS model where the only regressors were TPP dummies, the covariance matrix of the TPP estimates would be ܸ ൌ
 ଶሺ்ܶܲܲܶܲܲሻିଵ, whose off-diagonal elements are zero. Covariates, random effects, and clustering may add a little to theߪ
off-diagonal elements. 
7 For most models, W was close to Q (within 0-7%) but with district clustering W was approximately twice as large as Q, and 
with TPP clustering W was 30,000-40,000 times larger than Q (e.g., W≈108 when Q≈3,000). The latter result seemed 
implausible, although it doesn’t matter since we will show there are good reasons not to use TPP clustering. 
8 In practice, each contrast has a different reliability p, which is not known but is estimated by ߩො௣ ൌ ߬̂ଶ/ሺ߬̂ଶ ൅  ௣ଶሻ, where ߬̂ଶݏ̂
is an estimate of ߬ଶ (Merrmann, Walsh, Isenberg, & Resch, 2013). What this means is that we need an estimate of ߬ଶ before 
we can calculate the EB estimates. There is something circular about then using the variance of the EB estimates as a new 
estimate of ߬ଶ.  
9 ANOVA calculations are implemented by the loneway command in Stata. 
 

Endnotes 
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10 Notice that the single significant reading estimate does not have the largest absolute point estimate in the caterpillar plot. It 
only has the largest point estimate relative to its SE. 
11 We calculated this fraction of variance by running an ANOVA on the data published by Conley and Önder (2014). Conley 
and Önder summarize their results in a different way. 
12 To walk through the calculation: if the SD between teachers is .09 and only 1 percent of the teacher variance (SD2) lies 
between TPPs, then the SD between TPPs would be . 09 ൈ √. 01 ൎ .01. Alternatively, if the SD between teachers is .16 and 
as much as 3 percent of the teacher variance lies between TPPs, then the SD between TPPs would be . 16 ൈ √. 03 ൎ .03. 
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Tables and Figures 

Table 1. Sample sizes, all grades 

 Math Reading 
Students 298,584 210,397 
Teachers 6,358 4,965 
Classrooms 24,008 17,660 
Schools 3,491 3,085 
Districts 765 711 
TPPs 95 92 

Note. The sample is limited to teachers in their 1st, 2nd, or 3rd year of teaching. This is the largest and most diverse sample ever used to estimate 
teacher quality differences between TPPs. 
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Table 2. Estimates, SEs, and significance of all-grade TPP estimates 

a. All TPPs 
       TPPs significantly different 

Subject Model TPPs 
SD of point 
estimates 

Mean 
of SEs 

Corr. 
with OLS 

Corr. with 
RE 

teachers Uncorrected 
Bonferroni 
corrected 

Math OLS 95 .071 .023 1 .89 43 23 
 OLS with teacher clustered SEs  .071 .043 1 .89 16 2 
 OLS with school clustered SEs  .071 .043 1 .89 14 2 
 OLS with district clustered SEs  .071 .041 1 .89 18 4 
 OLS with TPP clustered SEs  .071 .011 1 .89 63 48 
 RE teachers  .078 .050 .89 1 10 0 
 RE schools + RE teachers  .075 .050 .89 .97 7 0 
 FE schools + RE teachers 94 .102 .073 .50 .60 5  1 
Reading OLS 92 .054 .027 1 .97 28 5 
 OLS with teacher clustered SEs  .054 .039 1 .97 10 1 
 OLS with school clustered SEs  .054 .039 1 .97 10 1 
 OLS with district clustered SEs  .054 .037 1 .97 14 3 
 OLS with TPP clustered SEs  .054 .011 1 .97 56 37 
 RE teachers  .056 .041 .97 1 11 1 
 RE schools + RE teachers  .051 .041 .95 .98 7 0 
 FE schools + RE teachers 91 .081 .067 .14 .16 8 0 
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b. Large TPPs (≥40 teachers in subject) 
       TPPs significantly different

Subject Model TPPs 
SD of point 
estimates 

Mean 
of SEs 

Corr. 
with OLS 

Corr with 
RE 

teachers Uncorrected 
Bonferroni 
corrected 

Math OLS 48 .038 .010 1 .85 27 17 
 OLS with teacher clustered SEs  .038 .025 1 .85 9 1 
 OLS with school clustered SEs  .038 .026 1 .85 8 0 
 OLS with district clustered SEs  .038 .026 1 .85 9 1 
 OLS with TPP clustered SEs  .038 .007 1 .85 35 25 
 RE teachers  .036 .026 .85 1 7 1 
 RE schools + RE teachers  .030 .026 .78 .96 3 0 
 FE schools + RE teachers 44 .040 .038 .26 .31 2 1 
Reading OLS 37 .022 .013 1 .84 10 4 
 OLS with teacher clustered SEs  .022 .020 1 .84 4 0 
 OLS with school clustered SEs  .022 .021 1 .84 4 0 
 OLS with district clustered SEs  .022 .020 1 .84 6 2 
 OLS with TPP clustered SEs  .022 .006 1 .84 21 13 
 RE teachers  .022 .020 .84 1 4 1 
 RE schools + RE teachers  .021 .020 .76 .94 3 1 
 FE schools + RE teachers 35 .044 .033 .10 .15 5 0 

Note. The school FE model produces the least precise estimates. Teacher-, school-, and district-clustered SEs are biased downward, but the bias is 
negligible in large TPPs. OLS and TPP-clustered SEs are biased downward, and the bias does not improve in large TPPs. The models with teacher 
REs, or teacher and school REs, produce the best SE estimates overall. 
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Table 3. Estimates of all-grade heterogeneity and reliability, calculated using SEs  

a. All TPPs  

  Reliability Heterogeneity SD Homogeneity tests 
 Model ߩොு ොொ (95% CI) ߬̂ுߩ ߬̂ொ df Q LR 
Math OLS .82 .88 (.87,.90) .06 .07 94 813*** 820***
 OLS with teacher clustered SEs .41 .60 (.49,.68) .05 .06  232***  
 OLS with school clustered SEs .45 .62 (.53,.70) .05 .06  243***  
 OLS with district clustered SEs .52 .67 (.60,.74) .05 .06  288***  
 OLS with TPP clustered SEs .97 .97 (.97,.97) .07 .07  3,253***  
 RE teachers .40 .38 (.20,.52) .05 .05  152*** 148***
 RE schools + RE teachers .38 .23 (.01,.41) .05 .04  122* 122* 
 FE schools + RE teachers .28 .14 (.00,.33) .05 .04 93 105  
Reading OLS .64 .73 (.67,.78) .04 .05 91 346*** 344***
 OLS with teacher clustered SEs .24 .39 (.22,.53) .03 .03  151***  
 OLS with school clustered SEs .24 .41 (.24,.54) .03 .03  154***  
 OLS with district clustered SEs .31 .55 (.44,.65) .03 .04  204***  
 OLS with TPP clustered SEs .95 .96 (.96,.97) .05 .05  2,599***  
 RE teachers .31 .33 (.13,.48) .03 .03  136** 134** 
 RE schools + RE teachers .18 .24 (.01,.42) .02 .03  120* 119* 
 FE schools + RE teachers .06 .24 (.01,.42) .02 .04 90 118*  

b. Large TPPs (≥40 teachers in subject) 
  Reliability Heterogeneity SD Homogeneity test 

 Model ߩොு ߩොொ ሺ95% CI) ߬̂ு ߬̂ொ df Q 

Math OLS .92 .92 (.90, .93) .04 .04 47 573*** 
 OLS with teacher clustered SEs .50 .49 (.29, .64) .03 .03  94*** 
 OLS with school clustered SEs .49 .46 (.24, .62) .03 .03  87*** 
 OLS with district clustered SEs .44 .59 (.44, .70) .03 .03  116*** 
 OLS with TPP clustered SEs .95 .96 (.96, .97) .04 .04  1,315*** 
 RE teachers .43 .46 (.24, .62) .02 .02  87*** 
 RE schools + RE teachers .18 .22 (.00, .46) .01 .01  60 
 FE schools + RE teachers .09 .16 (.00, .42) .01 .01 43 49 
Reading OLS .63 .78 (.70, .84) .02 .02 36 169*** 
 OLS with teacher clustered SEs .04 .35 (.03, .57) .00 .01  55* 
 OLS with school clustered SEs .01 .34 (.00, .56) .00 .01  53* 
 OLS with district clustered SEs .07 .53 (.32, .68) .01 .02  76*** 
 OLS with TPP clustered SEs .91 .96 (.95, .96) .02 .02  849*** 
 RE teachers .05 .36 (.04, .57) .01 .01  55* 
 RE schools + RE teachers .00 .29 (.00, .53) .00 .01  50 
 FE schools + RE teachers .00 .21 (.00, .48) .00 .01 34 56* 

Note. Models which underestimate the SEs will overestimate reliability and heterogeneity; they will also over-
reject the null hypothesis of homogeneity. Models that provide better SE estimates suggest that little 
heterogeneity is present, especially in large TPPs. 
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Table 4. Estimates of all-grade heterogeneity and reliability, calculated by correlating single-grade point 
estimates   

a. All TPPs  

  Reliability Heterogeneity SD Homogeneity test 
Subject Model ߩොூ஼஼ (95% CI) ߬̂ூ஼஼ (95% CI) F 
Math OLS (with or without clustered SEs) .40 (.15,.57) .03 (.02,.04) 1.68*** 
 RE teachers .42 (.18,.58) .03 (.02,.04) 1.73*** 
 RE schools + RE teachers .38 (.12,.55) .03 (.01,.04) 1.62*** 
 FE schools + RE teachers .23 (.00,.44) .04 (.00,.06) 1.29 
Reading OLS (with or without clustered SEs) .26 (.00,.47) .02 (.00,.03) 1.34* 
 RE teachers .36 (.08,.55) .02 (.01,.03) 1.57** 
 RE schools + RE teachers .31 (.00,.51) .02 (.00,.03) 1.45* 
 FE schools + RE teachers .00 (.00,.30) .00 (.00,.05) 0.95 

 

b. Large TPPs (≥40 teachers in subject) 

  Reliability Heterogeneity SD Homogeneity test 
Subject Model ߩොூ஼஼ (95% CI) ߬̂ூ஼஼ (95% CI) F 
Math OLS (with or without clustered SEs) .37 (0,.58) .02 (0,.03) 1.59* 
 RE teachers .37 (0,.58) .02 (0,.03) 1.60* 
 RE schools + RE teachers .19 (0,.46) .01 (0,.02) 1.24 
 FE schools + RE teachers .10 (0,.40) .02 (0,.04) 1.11 
Reading OLS (with or without clustered SEs) .10 (0,.43) .01 (0,.02) 1.11 
 RE teachers .11 (0,.44) .01 (0,.02) 1.13 
 RE schools + RE teachers .10 (0,.43) .01 (0,.02) 1.11 
 FE schools + RE teachers .34 (0,.60) .04 (0,.07) 1.51 

 

Note. These reliability and heterogeneity estimates do not depend on SE estimates. Across all models they 
suggest that little heterogeneity is present.  
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Figure 1. TPP contrasts from the all-grade models. The distribution of point estimates is similar to the null distribution, and only one of the 
Bonferroni confidence intervals does not cover zero. These results suggest that little true variation between TPPs is present, and most of the observed 
differences are due to noise. 
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Figure 2. Standard errors (SE) of small and large TPPs under a model with teacher random effects vs. a model with teacher clustered SEs. The 
teacher-clustered SEs are more volatile and have a negative bias in small TPPs. 
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