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It is often assumed that a vertical scale is necessary when value-added models

depend upon the gain scores of students across two or more points in time. This

article examines the conditions under which the scale transformations associated

with the vertical scaling process would be expected to have a significant impact

on normative interpretations using gain scores. It is shown that this will depend

upon the extent to which adopting a particular vertical scaling approach leads to

a large degree of scale shrinkage (decreases in score variability over time).

Empirical data are used to compare school-level gain scores computed as a func-

tion of different vertical scales transformed to represent increasing, decreasing,

and constant trends in score variability across grades. A pragmatic approach

is also presented to assess the departure of a given vertical scale from a scale with

ideal equal-interval properties. Finally, longitudinal data are used to illustrate a

case when the availability of a vertical scale will be most important: when ques-

tions are being posed about the magnitudes of student-level growth trajectories.

Keywords: vertical scaling, value-added models, growth models, gain scores, scale

shrinkage

Introduction

The key input for any value-added model (VAM) is longitudinal data from
standardized assessments that have been administered to students over two or
more points in time. Because psychometricians often go through considerable
effort to link test scores to facilitate score comparability across grades (i.e.,
vertical scaling) and because there are many different ways to go about this pro-
cess (Briggs & Weeks, 2009; Tong & Kolen, 2007), it is intuitive to assume that
vertical scaling can have an impact on inferences about value added. This would
seem to especially be the case when a VAM specifies a gain score as the outcome
of interest. For example, according to Ballou, Sanders, & Wright (2004):

Measuring student progress requires controlling in some fashion for initial level of
achievement. This is done most transparently if the pre- and post-tests are on the
same achievement scale (‘‘vertically equated’’), in which case the analysis can
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be based on simple differences or gain scores. . . . The TVAAS [Tennessee Value
Added Assessment System] requires tests that are vertically linked—scores for
fourth graders, for example, must be expressed on the same developmental scale
as scores for third graders, fifth graders, etc. In order to compare the progress of
students over time, test forms must be equated across years. (pp. 38, 43)

Similarly, McCaffrey, Lockwood, and Hamilton (2003) suggest that
‘‘estimated teacher effects could be very sensitive to changes in scaling or other
alterations to test construction and vertical linking of different test forms.’’
Ballou (2009) investigates the tacit assumption that tests vertically scaled using
item response theory (IRT) methods have equal-interval properties and comes to
rather pessimistic conclusions, ultimately arguing in favor of value-added
modeling approaches that would only require test scores with ordinal properties.
A concern over the need for a vertical scale seems to have been one of the moti-
vations for the VAM extension described by Mariano, McCaffrey, and Lock-
wood (2010) entitled ‘‘A Model for Teacher Effects From Longitudinal Data
Without Assuming Vertical Scaling.’’ Likewise, Betebenner (2009) has argued
that an advantage of his student growth percentile methodology is that it does not
require a vertical scale, or, for that matter, a scale score with interval properties.

The purpose of this article is to examine the conditions that would need to be
met before the vertical scaling process can be expected to have a significant
impact on the ordering of schools or teachers with respect to estimates of value
added. When the outcome variable of a VAM is a test score level, the presence or
absence of a vertical scale is inconsequential. On the other hand, when the out-
come variable consists of test score gains, the vertical scaling process can have an
impact, but only when the variability in student achievement on a proposed ver-
tical scale decreases substantially from grade to grade relative to the pattern that
would have been observed in an alternative scaling (i.e., scale shrinkage; Camilli,
Yamamoto, & Wang, 1993; Clemans, 1993; Hoover, 1984a, 1984b; Yen, 1986,
1988; Yen, Burket, & Fitzpatrick, 1995). We establish this through theoretical
argument in the first section of the article and then demonstrate it empirically
in the second section using longitudinal item response data with student achieve-
ment linked to schools for a medium-sized state from 2003 to 2006. In the third
section, we present a heuristic approach to evaluate the possible impact of
departures of a scale from the equal-interval ideal. When this approach is applied
to the same data set, it appears that inferences about value added are relatively
insensitive to the extent of a scale’s departure from the ideal interval scale. This
is because VAMs focus attention primarily upon the ordering of schools and
teachers not upon the magnitudes that separate the schools or teachers being
ordered. In the fourth section, we establish a growth modeling context where the
presence or absence of a vertical scale plays an important role. This context
occurs when direct questions are being posed about the magnitudes of student-
level growth trajectories over a 5-year period of time. Yet even in this context,
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where a vertical scale is desirable to facilitate inferences about student growth, if
the model is also being used to categorize school districts in terms of estimated
value added, very similar conclusions may be reached about the effectiveness of
school districts whether or not the test scores have been vertically scaled. The
article concludes with a discussion section.

The Theoretical Framework

A Brief Overview of the Vertical Scaling Process

An underappreciated aspect of creating a vertical scale is the importance of
design considerations. What is the construct to be measured and how is it believed
to change over time? On what grounds should common items be selected that over-
lap adjacent grades? How well are the common items aligned with the curriculum
and instructional received by students? Although these design issues are of critical
importance (cf. Kolen & Brennan, 2004; Peterson, Kolen, & Hoover, 1989), they
are outside the scope of the present article, which has more limited ambitions. In
what follows, we will optimistically assume that a defensible theory about student
growth and development underlies a collection of test items that have been written
for the purpose of creating a vertical scale. Our focus will be on the subsequent
steps that might be taken to calibrate and transform item responses after a field test
has been administered, and the conditions under which this will have an impact on
the use of test scores for value-added inferences.

When using IRT-based methods (the predominant approach in large-scale
assessment contexts), this process involves at least two implicit stages. In a first
stage, the raw scores for students taking grade-specific test forms are first trans-
formed through the application of an item response function. This places scores
onto a logit scale with an arbitrary mean and standard deviation (SD). Given the
common IRT identification constraint to set the mean and SD of the logit scale
for each grade-specific test to (0,1), the task in establishing vertical links between
the grades is to designate a base grade scale and then link adjacent grades to this
scale. In this article, we focus on doing so through a separate, rather than a con-
current, estimation approach (Hanson & Béguin, 2002; Kim & Cohen, 1998).
Focusing on the separate estimation approach makes the theoretical argument
easier to follow since there is no closed form expression for the grade-specific
transformations to a scale that take place under the concurrent approach.
Empirically however, the results from taking a concurrent approach to create a
vertical scale have been shown to be very similar to that from taking separate
approach (Hanson & Béguin, 2002), so it seems likely that the same argument
we build for the impact of the separate approach on gain scores would apply
to the concurrent approach. A separate linking approach is implemented by
embedding common items across grades in a given year of testing, and then,
leveraging the IRT property of parameter invariance, these common items can
be used to estimate linear constants that link a focal grade scale to a base grade
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scale. The linking constants needed for the transformation are estimated
iteratively using a characteristic curve method such as the Stocking–Lord algo-
rithm (Stocking & Lord, 1983).

In a second stage, additional choices are typically made to further transform
the vertically linked scale away from the logit metric. Sometimes the transforma-
tion is mostly cosmetic, such as when a linear transformation is used to avoid
displaying test score results with negative values. But in other cases, the transfor-
mation employed may be more elaborate. For example, Kolen and Brennan
(2004) describe transformations that could be made to ensure that a score scale
takes on a particular distributional shape. Finally, as a last step in establishing
the vertical scale, test developers will typically establish the smallest unit of
change along the scale, round transformed scores to the nearest integer of this
unit, and designate the lowest and highest obtainable scale scores (i.e., the
‘‘LOSS’’ and ‘‘HOSS’’) for a particular grade.

A Brief Overview of VAM

In the 2010 National Research Council and National Academy of Education
report Getting Value out of Value-Added, VAMs are defined as ‘‘a variety of
sophisticated statistical techniques that use one or more years of prior student test
scores, as well as other data, to adjust for preexisting differences among students
when calculating contributions to student test performance’’ (p. 1). According to
Harris (2009), ‘‘the term is used to describe analyses using longitudinal student-
level test score data to study the educational input-output relationship, including
especially the effects of individual teachers (and schools) on student achieve-
ment’’ (p. 321). From these definitions, two key features of VAMs are implicit.
First, all VAMs use, as inputs, longitudinal data for 2 or more years of student test
performance. Second, VAMs are motivated by a desire to isolate the impact of
specific teachers or schools from other factors that contribute to a student’s test
performance. It follows from this that the output from a VAM is a numeric quan-
tity that is intended to facilitate causal inferences about teachers or schools.

Two of the most commonly applied VAMs are based upon the use of fixed-
and mixed-effect regression approaches, respectively. We briefly present each
below, focusing attention on whether the model implies the need for longitudinal
test scores that have been vertically scaled. Consider first the production function
approach typically invoked by economists (Hanushek & Rivkin, 2010; Todd &
Wolpin, 2003). Let Yit represent an end of year test score on a standardized
assessment for student i at time t. Let j, k, and m index unique classrooms, teach-
ers, and schools, respectively. A general expression for a VAM is

Yijkmt ¼ mt þ !Yit#1 þ b1tXit þ b2tPjt þ b3tSmt þ b4Zit þ ykt þ eit: ð1Þ

In the regression model above, the vector Xit represents student-specific
participation in a school-based program (e.g., special education, gifted, and talented,
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etc.), the vector Pjt represents classroom peer characteristics (e.g., the average prior
year test performance of a student’s peers in classroom j), the vector Smt represents
school-level variables,1 and the vector Z captures time-invariant student character-
istics. The parameter ykt represents the increment that teacher k adds to a student i’s

achievement in year t. The residual error term eit is assumed to be iid& Nð0;s2Þ. A
key point is that in the model above it is not necessary for test scores in year t to be on
the same scale as test scores in year t# 1. So long as the score scales have a linear
relationship, differences in the scale would be reflected by changes to the values of
the parameters mt and !. On the other hand, if! is constrained to equal 1, this results
in a VAM with a gain score as the dependent variable. In such cases, it appears nec-
essary for both Yit and Yit#1 to be expressed on a common vertical scale.

The Educational Value-Added Assessment System (EVAAS; Sanders,
Saxton, & Horn, 1997) has the longest history as a VAM used for the purpose
of educational accountability. While a detailed presentation is outside the scope
of this article, a key point of differentiation between it and the production func-
tion approach presented above can be seen by writing out the equation for a sin-
gle test subject as

Yit ¼ mt þ
X

t'(t

yt' þ eit: ð2Þ

In Equation 2, the achievement of student i in year t is expressed as a linear func-
tion of a year-specific average ðmtÞ and the cumulative impact of teachers that have

been associated with a student over his or her years of schooling ðy1; y2; :::; ytÞ. The
EVAAS is a multivariate mixed-effects model. As such, teacher ‘‘effect’’
parameters for a given grade are cast as random variables with a multivariate normal
distribution such that yt yt' & Nð0; tÞ. Only the main diagonal of the covariance
matrix is estimated (i.e., teacher effects are assumed to be independent across
grades). The student-level error term is also cast as a draw from a multivariate nor-
mal distribution with a mean of 0, but the covariance matrix is left unstructured.

The EVAAS is often referred to as the layered model because a student’s current
grade achievement is expressed as a cumulative function of the current and previous
year teachers to which a student has been exposed. For example, applying the model
above to the context of univariate longitudinal data that span three consecutive years
(i.e., Grades 3 through 5) results in the following system of equations:

Yi1 ¼ m1 þ y1 þ ei1

Yi2 ¼ m2 þ y1 þ y2 þ ei2

Yi3 ¼ m3 þ y1 þ y2 þ y3 þ ei3:

In the first of the three equations, m1 represents the average achievement of
students in the base year grade and y1 represents the deviation from this average
for students assigned to a given teacher. In this first equation, y1 combines both
the effectiveness of a student’s teacher and all other factors that could influence a
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student’s achievement (e.g., socioeconomic status, motivation, etc.). However,
when certain assumptions hold about the use of past achievement to adjust for
any systematic sorting of students to teachers (cf. Ballou et al., 2004), it becomes
possible to interpret y2 and y3 as distinct estimates of teacher value added in
Years 2 and 3. This can be seen by substituting the first equation into the second
equation in the system such that Yi2 # Yi1 ¼ m2 # m1 þ y2 þ ei2 # ei1. Since y1

cancels, differences in a student’s achievement from Year 1 to Year 2 are attrib-
uted to a year-specific main effect ðm2 # m1Þ, a teacher effect (y2), and a residual
source of stochastic error ðei2 # ei1Þ. Although a more detailed presentation of

the EVAAS and the assumptions required before estimates of y2 and y3 can be
given a causal interpretation are outside the scope of this article, the main point
here is to notice that the teacher effects on the right-hand side of the equations are
identified by successive test score gains from one grade to the next. It is for this
reason that the EVAAS (and other mixed-effect modeling approaches related to
it) has long been presumed to require test scores that have been vertically scaled.

How Vertical Scaling Can Affect Comparisons Based on Gain Scores

Imagine two tests administered across two adjacent grades. The two tests have
been separately placed onto the logit metric using IRT. Denote the two test score
scales that result by y and x, where y comes from time t and x comes from t # 1,
where the time units are defined by grade levels. The two logit scales are linked
by imposing the following linear transformations

x0 ¼ a0 þ a1x

y0 ¼ b0 þ b1y:
ð3Þ

For each transformation, the intercept parameters a0 and b0 shift the entire score
scale up or down by a constant amount while the slope parameters a1 and b1 expand
the scale when b1 > a1, or contract it when b1 < a1. Put differently, a0 and b0

affect the location of the scale, while a1 and b1 affect the variance of the scale. Note
that if x were designated as the base grade for the vertical scale, it would be custom-
ary to constraina0 to 0 anda1 to 1. In practice, the linking constants in Equation 3 are
usually estimated using the Stocking–Lord algorithm (Stocking & Lord, 1983), but
in what follows we will treat them as if they were known.

It is easy to show that these linking transformations are inconsequential when
the production function VAM (Equation 1) is being used to estimate value added.
For example, consider the simplest specification with just a single cohort of stu-
dents that only conditions on prior grade achievement, xi. Let i index students and
j index either a teacher- or school-fixed effect so we can write

yi ¼ mþ !xi þ yj þ ei: ð4Þ
Now, consider the same model after the two scales have been vertically linked

using Equation 3:
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b0 þ b1yi ¼ mþ !ða0 þ a1xiÞ þ yj þ ei: ð5Þ

With a little algebra, Equation 5 can be rewritten as

yi ¼
m# b0

b1

! "
þ !ða0 þ a1xiÞ

b1

! "
þ y

0

j þ
ei

b1

;

where y
0

j ¼
yj

b1
. It follows that the parameters yj and y

0

j from Equations 4 and 5 will

be perfectly correlated. Because many of the highest profile applications of
value-added modeling use test score levels rather than test score gains as the out-
come of interest (cf. Chetty, Friedman, & Rockoff, 2011), the presence or
absence of a vertically linked score scale is seldom a cause for alarm.

In contrast, consider the special case where ! ¼ 1 such that the outcome variable
of interest in a VAM is a gain score. Before vertical links have been established, we
have

yi # xi ¼ mþ yj þ ei: ð6Þ
Once again, consider the same model after the two scales have been vertically

linked:
b1yi # a1xi ¼ m# b0 þ a0 þ yj þ ei: ð7Þ

The values of the additive linking constants a0 and b0 will have a uniform
impact that will leave any normative comparisons of value added based on yj

unchanged. By contrast, unless the two multiplicative linking constants a1 and
b1 are identical, there is no guarantee that the value-added estimates from Equa-
tion 6 will be linearly related to those from Equation 7. The impact of vertical
linking on gain score interpretations comes through transformations that affect
the variability of the scale from grade to grade. If additional transformations are
made in the process of establishing the final form of the scale, this might further
compound the situation, but the basic message remains the same: Only transfor-
mations that expand or contract the variability of the scale across grades should
be expected to have an impact on normative comparisons related to gain scores.
The key practical question is whether it is likely, for any pair of adjacent grades,
that the vertical scaling process could lead to differences between Equations 6
and 7 large enough to significantly change the ordering of teachers or schools.
This is the question to be explored in the next section.

Empirically Observed Shifts in Grade-to-Grade Variability
From Existing Vertical Scales

To get a better sense for the shifts in variability that are plausible after tests have
been vertically scaled, one can examine the empirical differences in the SDs of score
distributions across Grades 3–8 in English Language Arts (ELA) and mathematics,
respectively, for 16 states with existing vertical scales. This was accomplished using
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information gathered by Dadey and Briggs (2012) about grade-by-grade scale score
means and SDs for 16 states from technical reports covering the years 2007 and
2008. For each state and test subject, all grade-specific SDs are divided by the Grade
3 SD and then differences are computed across adjacent grades. The summary sta-
tistics for grade-to-grade SD changes are shown in Table 1.

For the average state, the change in SD across grades is generally very small
(between about .01 and .06 in absolute magnitude). The largest decrease in SDs
across grades for any state was #0.29 in ELA (Grades 3–4) and #0.18 in math
(Grades–7). The largest increase was 0.23 in ELA (Grades 6–7) and 0.22 in math
(Grades 7–8).

To connect this back to the theoretical argument established in the previous
section, recall the gain score model represented by Equation 7: b1yi # a1xi

¼ m# b0 þ a0 þ yj þ ei. Given two grades where the lower grade scale (x) has

been fixed to have a1 ¼ 1, when the variability of the upper grade scale (y)
increases relative to the lower grade, it follows that b1 > 1. In contrast, when
scale variability decreases across grades, b1 < 1. So the largest decrease in
grade-to-grade SDs shown in Table 1 of #0.29 is akin to finding that b1 ¼ :71.

Given Equation 7, when evaluating the impact of choosing a proposed vertical
scale over some alternative scale (as will be done in the next section), the variable
of interest for any two adjacent grades will be the difference in SD differences.
For example, let the superscript ‘‘p’’ indicate a proposed vertical scale and the
superscript ‘‘a’’ indicate an alternative scale. Now define the difference in SD
differences as

dg ¼ ðbp
1 # ap

1Þ # ðb
a
1 # aa

1Þ: ð8Þ

TABLE 1.
Summary Statistics for Changes in Standard Deviations (SDs) of Vertical Scales Across

Adjacent Grade Pairs

Grades 3–4 Grades 4–5 Grades 5–6 Grades 6–7 Grades 7–8

ELA
M #0.06 #0.02 #0.01 0.03 #0.04
SD 0.09 0.06 0.07 0.09 0.10
Minimum #0.26 #0.11 #0.13 #0.17 #0.29
Maximum 0.17 0.12 0.11 0.23 0.10

Math
M #0.03 0.00 0.03 #0.02 0.03
SD 0.08 0.07 0.06 0.07 0.10
Minimum #0.15 #0.10 #0.07 #0.18 #0.13
Maximum 0.12 0.18 0.14 0.07 0.22

Note: ELA ¼ English Language Arts.

N ¼ 16 states.
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The g subscript indexes the higher of two adjacent grades. Suppose that for the

adjacent Grades 5 and 6 on a proposed vertical scale thatap
1 ¼ 1 andbp

1 ¼ :71 (keep-
ing with the example above), while for an alternative scale,aa

1 ¼ 1 andba
1 ¼ 1:10. It

follows that d6 ¼ #:39. As will be demonstrated, the further dg gets away from 0 in

absolute value (but particularly in the negative direction), the greater the impact on
value-added rankings based on gain scores. Note that if the alternative to a vertical
scale is to make no attempt to impose the transformations implied by Equation 3,
then this will typically impose the constraint that aa

1 ¼ ba
1 ¼ 1 (e.g., when all

grade-specific test scores have been scaled to be standard normal).

An Empirical Demonstration

Data

To examine the impact that differences in grade-to-grade variability can have
on the computation of school-level gains, we begin by replicating the process of
creating a vertical scale using the empirical data from an existing state’s
criterion-referenced large-scale assessment in reading. The longitudinal item
responses under consideration here were administered to students in Grades 3
through 7 between 2003 and 2006. The vertical scale for this reading assessment
was originally established by the state’s test contractor in 2001 on the basis of a
common item nonequivalent groups linking design (Kolen & Brennan, 2004). The
vertical score scale created for use in the present study derive from data that were
obtained directly from the state’s department of education. There are two student
cohorts of interest. The first cohort included students who were in Grade 3 in 2003
and Grade 6 in 2006; the second cohort included students who were in Grade 4 in
2003 and Grade 7 in 2006. The data from these two cohorts of students are used to
mimic the original approach taken to create this state’s vertical scale up to through
the first stage of the process. That is, using these two cohorts of students and com-
mon items between adjacent grades and years, we created a vertical score scale on
the logit metric using the combination of a three parameter logistic IRT model
(3PLM; Birnbaum, 1968), maximum likelihood estimation, and separate linking.
In what follows, we refer to this as the ‘‘observed’’ scale [O] because it is closest
to the vertical scale that is used by the state to capture grade-to-grade growth. We
subsequently summarize SD patterns by grade only with respect to the first cohort
of students who were in Grade 3 in 2003 and Grade 6 in 2006. On the observed
scale, the Grades 3 through 6 SDs were 1.00, 0.87, 0.85, and 0.94.

Next, four new scales were created through successive grade-specific scale
transformations that were applied in order to change the patterns of grade-to-
grade variability.

1. Constant SD [C]: Mean growth from grade to grade transformed to follow a linear
trajectory, SD transformed to be constant [1, 1, 1, 1].
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2. Constant Increasing SD [CI]: Grades 4 through 6 SDs transformed to increase by
0.15 each year [1.00, 1.15, 1.30, 1.45].

3. Nonconstant increasing SD [NCI]: SDs of Grades 4 and 5 transformed to increase
by 0.10, while the Grade 6 SD increases by 0.30 [1.0, 1.1, 1.2, 1.5].

4. Nonconstant decreasing SD [NCD]: Grade 4 through 5 SDs transformed to
decrease by 0.10 each year, while Grade 6 SD decreases by 0.30 [1.0, 0.9, 0.8, 0.5].

The purpose of these transformations was to intentionally create empirical
scenarios that varied the shifts in scale SDs from grade to grade. Note that these
sorts of transformations, though seemingly difficult to rationalize, are not incon-
ceivable as an approach that could be taken by psychometricians to ensure that a
vertical scale has ‘‘desirable’’ properties. Indeed, Kolen and Brennan (2004) and
Kolen (2006, p. 178) have argued that in the context of vertical scaling, ‘‘the IRT
proficiency scale also can be nonlinearly transformed to provide growth patterns
that are consistent with expected growth patterns. . . . Suppose a test developer
believes that the variability of scale scores should increase over grades. If the
variability of the IRT proficiency estimates does not increase over grades, a
nonlinear transformation of the proficiency scale could be used that leads to
increasing variability.’’ Hence, while it is unlikely that a vertical scale would
be transformed from the O scale to the NCD scale above, it represents a useful
extreme for the purpose of analytical comparisons of gain scores.

Grade-to-grade growth trends for the resulting five scales are shown numeri-
cally in Table 2 in terms of means and SDs, and graphically in Figure 1 in terms
of effect size units. The horizontal axis in Figure 1 shows three adjacent grade
pairings: Grades 3–4, Grades 4–5, and Grades 5–6. Growth for each grade pair
is computed as an effect size by subtracting mean scale scores for each grade and
dividing by the average SD.

To create a common frame of reference, the observed vertical scale and the
three vertical scales that result as a consequence of transformations that increase
or decrease the SD of scores from grade to grade are most easily compared to a
scale created to have linear growth and a constant SD [C]. We use this scale with
constant variability as a frame of reference because this represents the pattern
that would be observed if no attempt were made to create a vertical scale at all.
This is represented in Figure 1 by a solid horizontal black line. The four dashed
lines represent the effect size growth trajectories for the other four vertical scales
[O, CI, NCI, and NCD]. The primary factor driving the varying trajectories of
these lines is the differences in the magnitudes of grade-to-grade SD shifts.

Comparing School-Level Differences in Gain Scores by Scale

Our theoretical argument is that the transformations associated with the
vertical scaling process should only be expected to have an impact on value-
added inferences for models that rely upon gain scores when there are large rela-
tive differences in grade-to-grade SDs for two competing scales (dg is large). The
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empirical evidence suggests that, on average, grade-to-grade SD differences for
existing vertical scales are usually very small; however, we did find some state-
specific examples of grade-to-grade SD shifts between 0.20 and 0.30 in both neg-
ative and positive directions. We now put this theoretical argument to the test by
computing school-level test score gains for each scale and for each of the three
adjacent grade pairs for our 2003–2006 longitudinal cohort of students. Of inter-
est are the subsequent correlations of the school-level gain scores for the four
scales where the SD expands or contracts from grade to grade relative to a base
scale where the SD remains constant.

The results indicate that a large degree of scale shrinkage is needed in a proposed
vertical scale to have a significant impact on the ordering of schools based on gain
scores. When compared to the gain scores from a base vertical scale with constant
variance across grades, there are 12 correlations of interest (four scales crossed by
three grade pairs). Each of these correlations is shown in the cells of Table 3 along
with the associated dg. In 10 of the 12 cases, the correlation of school-level gain

scores is 0.95 or higher. The two exceptions occur when d6 ¼ 0:30 for the NCI
scale and when d6 ¼ #0:30 for the NCD scale. When d6 ¼ 0:30, the correlation
of school-level gain scores remains quite strong at r ¼ .86. But when
d6 ¼ #0:30, the correlation with the base scale drops to r ¼ .57. Figure 2

TABLE 2.
Descriptive Statistics for Vertical Scale Transformations

Grades

Transformation to Scale SD Statistic 3 4 5 6

Observed scale [O] M 0.063 0.461 0.739 0.904
SD 1.000 0.868 0.848 0.939
Growth — 0.43 0.32 0.18

Constant [C] M 0.153 0.456 0.758 1.061
SD 1.000 1.000 1.000 1.000
Growth — 0.30 0.30 0.30

Constant increasing [CI] M 0.153 0.524 0.986 1.538
SD 1.000 1.150 1.300 1.450
Growth — 0.34 0.38 0.40

Nonconstant increasing [NCI] M 0.153 0.501 0.910 1.596
SD 1.000 1.100 1.200 1.504
Growth — 0.33 0.35 0.50

Nonconstant decreasing [NCD] M 0.153 0.410 0.607 0.526
SD 1.000 0.900 0.800 0.496
Growth — 0.27 0.23 #0.12

Note: Means and SDs in logits. Growth is expressed in effect size units as upper grade mean less

lower grade mean divided by average SD.
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provides a panel scatterplot of the Grades 5–6 gain scores for these two scenarios.
In the case where r ¼ .57 (left panel), the presence of a large degree of scale
shrinkage essentially restricts the range of gain scores, making it much harder

FIGURE 1. Growth in effect sizes units for transformed vertical scales.

Note: Effect sizes are computed for each scale and grade pair by subtracting the lower
grade mean from the upper grade mean and then dividing by the average standard devia-
tion of the two grades. The solid line represents a base scale created to show linear growth
with a constant standard deviation across grades.

TABLE 3.
The Correlations of School-Level Gain Scores as a Function of the Difference in Grade-

to-Grade Standard Deviation (SD) Differences

Grades 3–4 Grades 4–5 Grades 5–6

Proposed Vertical Scale d4 r d5 r d6 r

O #.13 .96 #.02 1.00 .09 .96
CI .15 .96 .15 .95 .15 .96
NCI .10 .98 .10 .97 .30 .86
NCD #.10 .98 #.10 .96 #.30 .57

Note: The school-level gains computed for each proposed vertical scale are being compared to

school-level gains for a base scale with a constant SD across grades. For details on the variable dg, see

Equation 8 and accompanying narrative in text. O ¼ observed vertical scale; C ¼ constant SD, CI ¼
constant increasing SD; NCI ¼ nonconstant increasing SD; NCD ¼ nonconstant decreasing SD.
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to reliably distinguish schools. In contrast, scale expansion does not lead to the
same phenomenon.

In practice, a decrease in variability as large as 0.30 SDs was only observed for
one of the five adjacent grade pairings for a single state (of the 16) in one test sub-
ject. Decreases in variability—to the extent that they were observed at all—were
much more likely to be somewhere between#0.05 and#0.15, and these would not
have a significant impact on the ordering of schools as a function of average gain
scores. In additional analyses not shown here, we used data from the same state’s
reading assessment across Grades 3 through 8 and examined the correlation
between school-level gains under different vertical scales created from different
linking constants by fixing a1 at 1 and letting b1 vary. For values of b1 between
0.90 and 1.10, the correlation between school-level estimates was 0.97. Only for
values of b1 below 0.80 did we observe correlations that dropped below 0.90.

Departures From the Ideal Equal-Interval Scale

Ballou (2009) has pointed out that VAMs assume that test scores have interval
scale properties, irrespective of whether the VAM expresses the outcome variable
as test score gains or test score levels. With this in mind, it would be hard to argue
that any of the vertically linked scales presented in the previous section have equal-
interval properties. The observed vertical scale that was the source for the addi-
tional transformations described above was created by applying the 3PLM to sets
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FIGURE 2. Scatterplots of Grades 5–6 gain scores by school as a function of scale. Left

panel compares scale with constant standard deviation (SD) (y-axis) to scale with

decreasing SD (x-axis; r ¼ .57). Right panel compares scale with constant SD (y-axis)

to scale with increasing SD (x-axis; r ¼ .86).
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of grade-specific dichotomous item responses and then linking these sets using the
Stocking–Lord algorithm. The theory of conjoint measurement (Krantz, Luce,
Suppes, & Tversky, 1971; Luce & Tukey, 1964) provides the only analytical
framework that could be invoked to evaluate whether the resulting scale could
be said to have interval as opposed to ordinal or nominal properties. In practice,
such a rationale has seldom been applied empirically, and generally hinges upon
making an analogy between the Rasch model and a specific version of the theory
of conjoint measurement known as additive conjoint measurement (Borsboom,
2005; Borsboom & Scholten, 2008; Briggs, 2013; Brogden, 1977; Kyngdon,
2011; Michell, 2008a, 2008b; Perline, Wright, & Wainer, 1979).

However, from a pragmatic perspective, one might ask how large the departures
of each scale from an equal-interval ideal would need to be before they would have
an impact on inferences about school-level value added. To quantify the degree to
which a scale departs from an ideal equal-interval scale, one could extend an
approach previously employed by Hoover (1984a, 1984b) and more recently by
Ballou (2009). The idea is to assess, for each of the five scales that were considered
above, the amount of growth that would be required for a student to maintain his or
her position at the 10th, 25th, 50th, 75th, or 90th percentiles of the normative score
distribution across adjacent grades. These magnitudes are not directly comparable
across scales because of the different transformations that were imposed to create
each scale. Thus, to allow for such comparisons, we follow Ballou in taking, for
each pair of adjacent grades and each scale, the ratio of the gains needed to main-
tain a position at the 25th, 50th, 75th, or 90th percentiles relative to the gain needed
to maintain a position at the 10th percentile.

In the case of a scale with interval properties, one might anticipate that these
ratios will be close to 1, as Table 4 illustrates using the canonical example of
length, an attribute that can be expressed on a scale with not only interval but ratio
properties. According to data from the National Center for Health Statistics, the
amount of growth in inches required for boys to maintain the same position in a
normative height distribution is almost the same across the five percentiles shown
in Table 4. Boys whose initial height is in a higher percentile at 12 months of age
have to grow about the same to maintain the same relative position compared to
boys whose initial height is at a lower percentile. This supports the notion that the
more that a given vertical scale has ratios departing from 1 across starting percen-
tiles for any given grade pair, the stronger the circumstantial evidence that the scale
has properties that depart from the interval ideal. The evidence is circumstantial in
the sense that one cannot rule out the possibility that a scale has interval properties
despite having ratios at different percentiles that are greater or less than 1. After all,
if one was to discover that 12-month-old boys at the 75th percentile in height tend
to grow 3 times as fast as boys at the 25th percentile, this would still not invalidate
the units of a ruler as existing on an interval scale. Yet, when these sorts of values
differ dramatically as a function of the starting percentile, it may suggest some
scale-dependent growth patterns that merit closer examination.
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Table 5 reports the same ratios of gains at the 25th, 50th, 75th, and 90th per-
centiles relative to the 10th percentile gain for the five vertical scales created for
this study. For the observed vertical scale [O], the four ratios associated with
Grades 3–4 growth were 1.03, 1.04, 0.98, and 0.71, respectively. This implies
that it is at the 90th percentile that we see the strongest evidence against an inter-
val score interpretation—the gains required for students to maintain their posi-
tion at the 90th percentile are just 71% of the gains required to maintain their
position at the 10th percentile. In general, for the O scale we see the strongest
evidence for departures from an interval interpretation with Grades 5–6 gains.
The C scale (constant growth and variability) provides an interesting contrast
to the O scale. On the whole, the ratios for this scale are smaller; yet, here the
ratios are largest for the percentiles associated with Grades 3–4 gains and smal-
lest for the percentiles associated with the Grades 4–5 and 5–6 gains. In general,
all of the versions of the vertical scales have growth patterns that would seem to
indicate significant departures from the interval ideal for at least one of the three
grade pairs for which gains scores have been computed. This demonstrates that
vertical scale transformations can have a notable impact on the way gain
magnitudes can/should be interpreted at different points along the scale.

What is less clear is whether departures from an ideal interval scale will have a
significant impact on the relative rankings of schools as a function of average gain
scores. To get a sense for this, we first compute the mean grade-to-grade score gain
for all schools in our sample as a function of the five vertical scales previously
introduced. For each school, there are a total of five mean gain scores for each
of the three grade pairs. Next, we compute all pairwise correlations within each
grade pair as a function of the underlying scale for which the gains were computed.

TABLE 4.
Canonical Example of a Scale With Interval Properties: Length

Months 10 25 50 75 90

Length of boys in inches at percentiles of national
distribution

12 28.35 29.00 29.75 30.50 31.25
24 32.60 33.50 34.50 35.40 36.25
36 35.90 36.75 37.75 38.80 39.75

Gains in inches required to stay at each percentile
over a 12-month period
12–24 4.25 4.50 4.75 4.90 5.00
24–36 3.30 3.25 3.25 3.40 3.50

Ratio of gains relative to gains at 10th percentile
12–24 1.06 1.12 1.15 1.18
24–36 0.98 0.98 1.03 1.06

Source: Kuczmarski et al. (2002).

Briggs and Domingue

565

 at ARIZONA STATE UNIV on January 9, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


This produces a total of 30 correlation coefficients (10 pairwise correlations within
each of the three grade pairs). Higher correlations represent scale pairings where
the transformation of one to the other will have less impact on school rankings.

We find little evidence that the rankings of schools are sensitive to departures
from the ideal interval scale. That is, whether school gains are computed from a
vertical scale associated with gain ratios close to 1 or with gain ratios far from 1
(see Table 5), the rankings of schools with respect to these gains remains about
the same. In 20 of the 30 cases, the pairwise correlation is greater than .90 and the
median correlation is .96. The pairwise correlations that most depart from this
trend do not seem to be driven by apparent departures from the ideal interval
scale, but by pairwise combinations of gain scores from source vertical scales

with large d0gs: For example, consider four specific pairwise comparisons of a

school’s Grades 5–6 gains. As a point of reference, consider the gains computed
from the vertical scale that was transformed to have a 0.30 SD decrease from
Grades 5–6 (the NCD scale). Relative to the vertical scales transformed to have
either constant or increasing variance (the C, CI, NCI scales), this 0.30 SD
decrease is associated with d6 ¼ f0:30; 0:45; 0:60g relative to each competing
scale. Not surprisingly, given the results shown in Table 3, the associated corre-
lations in school-level gain scores decrease from 0.57, 0.31, and 0.07. The larger
the relative differences in SD changes between two candidate vertical scales, the
bigger the impact on value-added orderings.

TABLE 5.
Departures From the Interval Ideal for Transformed Vertical Scales

Scale Grades 25 50 75 90

O 3–4 1.03 1.04 0.98 0.71
O 4–5 0.93 0.88 0.79 0.78
O 5–6 4.52 6.95 9.03 9.92
C 3–4 1.56 2.05 2.31 2.02
C 4–5 0.97 0.95 0.90 0.92
C 5–6 1.11 1.13 1.14 1.06
CI 3–4 2.67 4.16 5.20 5.13
CI 4–5 1.20 1.39 1.51 1.70
CI 5–6 1.36 1.59 1.79 1.85
NCI 3–4 1.96 2.80 3.35 3.14
NCI 4–5 1.08 1.17 1.20 1.30
NCI 5–6 1.70 2.23 2.69 2.96
NCD 3–4 1.04 1.07 0.98 0.57
NCD 4–5 0.72 0.46 0.20 0.03
NCD 5–6 0.69 0.35 0.04 #0.30

Note: O ¼ observed vertical scale; C ¼ constant SD; CI ¼ constant increasing SD; NCI ¼
nonconstant increasing SD; NCD ¼ nonconstant decreasing SD.
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When Does a Vertical Scale Matter the Most?

Thus far, we have demonstrated that different vertical scales are most likely to lead
to significantly different gain score rankings when the choice of one scale over the
other has a large effect on scale variability from grade to grade. The crux of the issue
is that the purpose of vertical scaling is to facilitate inferences about growth in abso-
lute magnitudes, while the purpose of value-added modeling is to facilitate inferences
about teacher or school effectiveness in a normative sense. Since most VAMs use test
score levels rather than gain scores as the outcome variable of interest anyway, the act
of establishing a vertical scale will likely be most relevant when questions are being
posed about the average magnitudes of student-level growth trajectories. To help
illustrate this, consider the following set of research questions that could be posed
using the longitudinal Grades 5–9 math achievement data from students who
attended public school districts in a medium-sized state between 2003 and 2008:

1. What was the average annual growth rate of students in reading?
2. Do growth rates differ significantly as a function of

a. Gender?
b. Free and reduced lunch eligibility status?
c. English Language Learner status?
d. Special education status?
e. Gifted and talented (GT) status?

3. Do initially low-achieving students in Grade 5 grow faster in reading than initially
high-achieving students?

4. How do school districts rank with respect to the average growth of their students?

One relatively sophisticated way to address these questions would be to spe-
cify a three-level hierarchical linear model (HLM; Raudenbush & Bryk, 2002),
where a linear growth function for repeated measures (reading test scores from
Grades 5 to 9) is nested within students who are nested within school districts.
The three-level model is

Y s
ijk ¼ "0jk þ "1jkGRADEijk þ eijk : ð9Þ

"0jk ¼ b00k þ b
0

01Xjk þ r0jk

"1jk ¼ b10k þ b
0

11Xjk þ r1jk :
ð10Þ

b00k ¼ g000 þ y00k

b10k ¼ g100 þ y10k ;
ð11Þ

where Y s
ijk is the test score in grade i for student j in school district k expressed on scale

s; GRADEijk is an indicator variable for Grades 5 through 9, recoded to go from 0 to 4;
Xjk is a vector of student-level dummy variables for gender, free and reduced lunch
eligibility, English language status, special education status, and GT status; g000 and
g100 are fixed-effect coefficients associated with the Level-1 intercept "0jk and slope
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"1jk ; b
0

01 and b
0

11 are vectors of fixed-effect coefficients that interact with the Level-1

intercept "0jk and slope "1jk ; eijk represents a random grade-specific deviation for stu-

dent j in district k from the conditional mean; r0jk and r1jk represent Level-2 random
effects (student-specific deviations from the conditional means for the intercept and
slope parameters); and y00k and y10k represent Level-3 random effects (district-
specific deviations from the conditional means for the intercept and slope parameters).

In a value-added modeling context, the parameter y10k would typically be
given the interpretation as the school district effect on student achievement, as
it represents an increment in math achievement growth that is either above or
below the average for the entire state. The random effects in the model above are
assumed to be independent across levels and drawn from either a univariate or
multivariate normal distribution with an unstructured covariance matrix.

To simplify the illustration, only students who remain in the same school dis-
trict from Grades 5 to 9 and who were tested in each grade are included in the
analysis. In addition, student-level covariates are fixed to take on whatever value
was observed for a given student as of Grade 5. This leaves us with a sample of
20,062 students from 174 distinct school districts. Of these students, 54% were
female, 25% were eligible for free or reduced lunch services, 5% are classified
with limited English proficiency, 1% with no English proficiency, 8% receive
special education services, and 13% were identified as GT.

We estimate the parameters from the model above using the R package lme4
(Bates, Maechler, & Bolke, 2012) with three different versions of the longitudinal
test score outcome. In Version 1 (z score), we sum together the number of multiple-
choice items a student has answered correctly in a given grade and then standardize
the resulting variable. As a result, the z score outcome variable has a mean of 0 and
an SD of 1 across Grades 5 through 9. In Version 2 (theta), we transform the
response pattern for each student in a given grade to an estimate of ability using
the IRT 3PLM with maximum likelihood estimation. As a result, the y outcome
variable has a mean2 of about 0.25 logits and an SD of about 1 across Grades 5
through 9. Finally, in Version 3 (vertical scale), we take the ability estimates from
Version 2 and link them together across grades to create a vertical scale (i.e.,
thereby recreating the ‘‘observed’’ scale from the previous section, but this time
with 5 as the base grade). The Grades 5 through 9 means for this scale, in logits,
are 0.21, 0.67, 1.17, 1.55, 1.88, and the SDs are 0.95, 0.98, 0.94, 0.91, 0.79.

Clearly, the concept of growth is entirely different for the z score and y scales
relative to the vertically linked scale. For the first two scales, growth is purely nor-
mative—a student with higher scores from one grade to the next is a student whose
achievement has improved over time relative to her peers. As such for these scales,
it is difficult to make meaningful statements about the average ‘‘rate’’ of growth—
by definition, this growth rate is 0. By contrast, according to the vertical scale, the
growth rate of the average student is about 0.42 logits per grade, which represents
about 44% of the Grade 5 SD and 53% of the Grade 9 SD.
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The HLM parameter estimates for each scale are presented in Table 6. The fixed
effects under the row heading ‘‘Grade 5 achievement’’ can be interpreted as the
average Grade 5 achievement as a function of student-level covariates. The fixed
effect for slope under the row heading ‘‘Annual growth rate from Grade 5 to 9’’
represents the average annual growth rate as a function of student-level covariates.
The reference categories for the fixed effects are female students in the state who
are not eligible for free and reduced lunch services, are native English speakers,
and not classified as either GT or receiving special education services. The seven
main fixed-effect coefficients associated with Grades 5 achievement levels are
almost identical regardless of scale because they all reference student performance
across districts in Grade 5. Where the interpretation of fixed-effect coefficients var-
ies is when they are interacted with growth rates (under the row heading ‘‘Annual
growth rate from Grades 5 to 9’’). Here, we see that inferences about average dif-
ferences in growth as a function of student characteristics can change significantly
when the frame of reference of a scale shifts from normative to absolute. For exam-
ple, consider students who were classified as GT in Grade 5. On the basis of the z
score scale, the average GT student grows by an additional 0.07 SDs in reading
achievement each grade, so cumulatively from Grades 5 to 9 she will have gained
an additional 0.28 SDs (i.e., 4 ) 0.07¼ 0.28) relative to her peers. On the basis of
the y scale, the achievement of the average GT student stays about the same from
grade to grade relative to her peers (the model predicts a cumulative marginal
decrease from Grades 5 to 9 of .04 SDs). But compared to her non-GT peers on
the basis of the vertical scale, the average GT student grows at a significantly
slower rate in an absolute sense. By Grade 9, a GT student is predicted to have
grown about 0.12 logits less than a non-GT student, which is about 15% of the
Grade 9 SD. As this example demonstrates, the creation of a vertical scale will
have a substantive impact when comparisons of growth are desirable on the basis
of absolute magnitudes. For a different example, consider students receiving spe-
cial education services. According to the z score scale these students are showing
dramatic growth relative to their peers—cumulatively the average student receiv-
ing special education services grows almost half of a Grade 9 SD more than stu-
dents who are not receiving special education services. However, this marginal
increase in growth appears much less impressive on the y scale and on the vertical
scale. According to the vertical scale, these students only grow about 0.20 logits
more than students not receiving special education services from Grades 5 to 9,
which represents about 25% of a Grade 9 SD. This is still notable, but only half
as large in magnitude relative to the results implied by the z score scale.

Note that even in a normative sense, growth is consistently smaller on the y
scale than it is on the z score scale. One possible explanation for this is that many
student subgroups who are significantly below average in achievement as of
Grade 5 are much more likely to not only guess on the multiple-choice items
given to them on their reading assessment but to become better at guessing the
correct answers over time (one cause of this might be teachers coaching students
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on how to take standardized tests). The use of the 3PLM to scale response
patterns may adjust for this spurious source of growth.

Do low-achieving students in Grade 5 grow faster than high-achieving
students? For the two normative scales, the answer to this is ‘‘not really’’: The
correlation between the student-level intercept and slope is #0.27 for the z score
scale and #0.19 for the y scale. The answer is different for the vertical scale,
where the respective correlation is #0.51, indicating that on average, lower
achieving students in Grade 5 grow more through Grade 9 than higher achieving
students.

TABLE 6.
Hierarchical Linear Model (HLM) Parameter Estimates by Scale of Reading Outcome

Measure

Z Score Scale y Scale Vertical Scale

Fixed effects
Grade 5 achievement

Intercept 0.053 0.240 0.200
Male 0.101 0.140 0.100
Free and reduced lunch #0.400 #0.400 #0.400
Limited English proficiency #0.605 #0.560 #0.500
Not English proficient #0.874 #0.830 #0.800
Gifted and talented 0.805 1.090 1.000
Special education #1.178 #1.120 #1.000

Annual growth rate from Grades 5–9
Intercept #0.037 #0.010 0.400
Male 0.023 0.010 0.000
Free and reduced lunch #0.002 #0.020 0.004
Limited English proficiency 0.073 0.030 0.050
Not English proficient 0.141 0.090 0.100
Gifted and talented 0.070 #0.010 #0.030
Special education 0.115 0.030 0.050

Random effects variance components
SD eijk (Level-1 residual) 0.386 0.457 0.304
SD r0jk (Level-2 intercept) 0.702 0.748 0.696
SD r1jk (Level-2 slope) 0.116 0.096 0.067
Correlation (Level-2 intercept, slope) #0.274 #0.189 #0.509
SD y00k (Level-3 intercept) 0.281 0.287 0.265
SD y10k (Level-3 slope) 0.051 0.051 0.044
Correlation (Level-3 intercept, slope) #0.476 #0.391 #0.525

N students 20,062 20,062 20,062
N districts 174 174 174

Note: Standard errors and p values are excluded because data consist of full population of students

and given sample size, almost all p values are <.001.
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Finally, what about value-added inferences? For each district, we can retrieve
empirical Bayes estimates of the random effect y10k . The intercorrelations among
the estimates across the three scales are

* 0.91 for the z score scale and y scale,
* 0.85 for the z score scale and vertical scale, and
* 0.87 for the y scale and vertical scale.

Whether the choice of scale would have a significant impact on value-added
interpretations would depend upon how these district estimates would be used. If
used to rank teachers according to quintiles of the effectiveness distribution, then
even a correlation as high as 0.91 could lead to significant shifts across quintiles.
On the other hand, if the estimates were only to be used to categorize districts in
the tails of the distribution that are significantly different from average, it is much
less likely that districts would see different categorizations by choice of scale
with correlations this high.

Discussion

The purpose of VAMs is to support inferences about the effects of teachers
and/or schools on student achievement. But these effects have a fundamentally
normative interpretation—a school is considered ‘‘effective’’ if the value it
appears to have added to student achievement is significantly larger than the
average for all other schools to which it is being compared. Because of this, addi-
tive changes to a test score scale from grade to grade will not have an impact on
value-added inferences. This is true even when a VAM uses gain scores as a
dependent variable; the ordering of teachers and schools as a function of average
gain scores is only sensitive to scale transformations that lead to significant
decreases in score variability across grades. It follows from this that the decision
to create a vertically linked score scale will only have an impact on value-added
inferences based on gain scores when the process leads to substantial scale
shrinkage relative to what would have been observed if a different approach had
been taken to create the vertical scale, or if the scores had not been linked at all.
This was shown to be the case theoretically and then demonstrated empirically.
When school-level gain scores from Grades 5 to 6 were computed for two ver-
tical scales—one that had been transformed to have constant variability across
grades and the other transformed to have a 0.30 SD decrease—there was a sig-
nificant change in the ordering of schools from one scale to the other.

This comparison captures a worst-case scenario if scale shrinkage represented the
empirical truth about student achievement over time. Suppose for a sequence of tests
across grades that if a vertical scale were to be established, one would in fact observe
substantial scale shrinkage. Suppose further that instead of creating vertical links,
grade-specific test scores are (a) standardized within each grade or (b) calibrated
using an IRT model but not linked. In case (a), the variability of scores across grades
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would stay constant by definition; in case (b), because of the typical IRT N(0,1) iden-
tification constraint on the population distribution of ability it would also stay
roughly constant. In either case, true scale shrinkage would be obscured by not cre-
ating a vertical scale, and this would distort inferences about value added for models
with gain scores as the outcome variable of interest.

If the process of establishing a vertical score scale could always be trusted to
provide test users with insights about the empirical reality of scale score variability,
then it would always be prudent to create a vertical scale to underlie the computa-
tion of gain scores and/or growth trajectories. A recent review of existing vertical
scales examined 160 different grade-to-grade SD changes (16 states ) 5 grade
pairs) 2 test subjects) and found only two examples of scale shrinkage that would
imply dg ¼ #:20 relative to an alternative scale with a constant SD across grades.

Nonetheless, such an occurrence, while rare, is still possible. A potential problem
with this line of reasoning is the notion that there are ‘‘true’’ growth trends that a
vertical scale can capture. This tension becomes evident if vertical scales are
monotonically transformed to ensure that grade-to-grade variability stay constant
or increase. If vertical scales are manipulated in this manner by test developers,
than it implies the test scores have only ordinal properties. This is rather peculiar,
as it would seem inconsistent with the entire purpose of creating a vertical scale to
facilitate comparisons of students in terms of absolute changes in magnitude.

To a large extent, the issue of whether a scale can be treated as though it has
interval properties is prior to the issue of whether or not scales for adjacent grades
can be linked together. Along these lines, Ballou (2009) has argued that depar-
tures from an idealized interval scale could create serious problems for any of the
commonly used VAMs presented in the second section of this article, because
most of them make the implicit assumption that the outcome variable is a contin-
uous variable with equal-interval properties. There are, in fact, rigorous ways that
such an assumption could be tested (Briggs, 2013; Kyngdon, 2011). In the
present article, we presented a less rigorous but much more easily implemented
heuristic that can be used to establish the extent to which a given scale departs
from the interval ideal. The basic idea is to compare competing scales with
respect to departures from a percentile gain ratio of 1. The empirical question
is whether observing a scale with a greater departure from the ideal has an impact
on intended comparison in any pragmatic sense. In the example considered here,
differences in a scale’s departure from the interval ideal did not appear to have a
significant impact on the ordering of schools as a function of gain scores.

Vertical scales are desirable when direct inferences are to be made about how
much a student has learned over two or more points in time. In this article, we
provided the example of specifying a linear growth curve model with three dif-
ferent math outcome scales, two that were normative in nature and a third that
had been vertically scaled. The choice of scale led to substantively different
answers to questions such as ‘‘Do students receiving special education services grow
faster in their math achievement than students who do not receive special education
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services?’’ For the two normative scales, questions about how much the average stu-
dent has grown must be reconceptualized in terms of how much the average student’s
achievement has increased relative to her peers. Nonetheless, note that when the
growth curve model was used to generate value-added estimates at the district level,
the choice of scale had a relatively small impact on the ordering of districts.

It is possible that choices in vertical scaling would have a more significant
impact when they are used as a basis for simple linear models that project student
achievement into the future. For example, in some states, a vertical scale might be
used as a means of setting vertically articulated cut points across grades through
the process of standard setting. Since projections of student achievement are eval-
uated relative to these cut points, if two different vertical scales led to different cut
point locations, this could change the cumulative distribution of students below a
given cut point. But in general, vertical scales seem much more likely to facilitate
meaningful interpretations about growth when the focus is on individual students
rather than the teachers or schools in which they are situated.
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Notes

1. The parameters for classroom and school-level contextual variables are only
identifiable when there is panel data available (i.e., multiple cohorts of stu-
dents per teacher).

2 . The mean is slightly greater than 0 in this case because the three parameter
logistic model (3PLM) was initially applied to the full population of students
in the state before the restriction was made to limit the analysis to the sub-
sample of 20,062. This implies that students who left school districts during
this time frame tended to be slightly lower achieving than those who stayed in
the same school district throughout.

References

Ballou, D. (2009). Test scaling and value-added measurement. Education Finance and

Policy, 4, 351–383.
Ballou, D., Sanders, W., & Wright, P. (2004). Controlling for student background in value-

added assessment of teachers. Journal of Educational and Behavioral Statistics, 29, 37–65.

Briggs and Domingue

573

 at ARIZONA STATE UNIV on January 9, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models
using S4 classes. R package version 0.999999-0. Retrieved from http://CRAN.R-
project.org/package¼lme4

Betebenner, D. (2009). Norm- and criterion-referenced student growth. Educational Mea-

surement: Issues and Practice, 28, 42–51.
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s

ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores

(pp. 397–479). Reading, MA: Addison-Wesley.
Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psycho-

metrics. Cambridge, MA: Cambridge University Press.
Borsboom, D., & Scholten, A. Z. (2008). The Rasch model and conjoint measurement the-

ory from the perspective of psychometrics. Theory & Psychology, 18, 111.
Briggs, D. C. (2013). Measuring growth with vertical scales. Journal of Educational Mea-

surement, 50, 204–226.
Briggs, D. C., & Weeks, J. P. (2009). The impact of vertical scaling decisions on growth

interpretations. Educational Measurement: Issues & Practice, 28, 3–14.
Brogden, H. E. (1977). The Rasch model, the law of comparative judgment and additive

conjoint measurement. Psychometrika, 42, 631–634.
Camilli, G., Yamamoto, K., & Wang, M. (1993). Scale shrinkage in vertical equating.

Applied Psychological Measurement, 17, 379.
Chetty, R., Friedman, J. N., & Rockoff, J. E. (2011). The long-term impacts of teachers:

Teacher value-added and student outcomes in adulthood (Working Paper 17699 (2),
1–51). Cambridge, MA: National Bureau of Economic Research.

Clemans, W. V. (1993). Item response theory, vertical scaling, and something’s awry in
the state of test mark. Educational Assessment, 1, 329–347.

Dadey, N., & Briggs, D. C. (2012). A meta-analysis of growth trends from vertically
scaled assessments. Practical Assessment, Research & Evaluation, 17. Retrieved from
http://pareonline.net/getvn.asp?v¼17&n¼14

Harris, D. N. (2009). Would accountability based on teacher value added be smart policy?
An examination of the statistical properties and policy alternatives. Education Finance

and Policy, 4, 319–350.
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