
 http://jebs.aera.net
Behavioral Statistics

Journal of Educational and

 http://jeb.sagepub.com/content/38/2/142
The online version of this article can be found at:

 
DOI: 10.3102/1076998611432174

originally published online 10 April 2012
 2013 38: 142JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS

Peter Z. Schochet and Hanley S. Chiang
Using Value-Added Models?

What Are Error Rates for Classifying Teacher and School Performance
 
 

 
Published on behalf of

 
 American Educational Research Association

and

 http://www.sagepublications.com

found at:
 can beJournal of Educational and Behavioral StatisticsAdditional services and information for 

 
 
 

 
 http://jebs.aera.net/alertsEmail Alerts: 

 

 http://jebs.aera.net/subscriptionsSubscriptions:  

 http://www.aera.net/reprintsReprints: 
 

 http://www.aera.net/permissionsPermissions: 
 

 What is This?
 

- Apr 10, 2012OnlineFirst Version of Record 
 

- Mar 27, 2013Version of Record >> 

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from  at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net
http://jeb.sagepub.com/content/38/2/142
http://jeb.sagepub.com/content/38/2/142
http://www.aera.net
http://www.aera.net
http://www.sagepublications.com
http://www.sagepublications.com
http://jebs.aera.net/alerts
http://jebs.aera.net/alerts
http://jebs.aera.net/subscriptions
http://jebs.aera.net/subscriptions
http://www.aera.net/reprints
http://www.aera.net/reprints
http://www.aera.net/permissions
http://www.aera.net/permissions
http://jeb.sagepub.com/content/38/2/142.full.pdf
http://jeb.sagepub.com/content/38/2/142.full.pdf
http://jeb.sagepub.com/content/early/2012/04/05/1076998611432174.full.pdf
http://jeb.sagepub.com/content/early/2012/04/05/1076998611432174.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://jebs.aera.net
http://jebs.aera.net
http://jebs.aera.net
http://jebs.aera.net


What Are Error Rates for Classifying Teacher

and School Performance Using Value-Added
Models?

Peter Z. Schochet

Hanley S. Chiang

Mathematica Policy Research

This article addresses likely error rates for measuring teacher and school

performance in the upper elementary grades using value-added models applied

to student test score gain data. Using a realistic performance measurement sys-

tem scheme based on hypothesis testing, the authors develop error rate formulas

based on ordinary least squares and Empirical Bayes estimators. Empirical

results suggest that value-added estimates are likely to be noisy using the

amount of data that are typically used in practice. Type I and II error rates for

comparing a teacher’s performance to the average are likely to be about 25%
with 3 years of data and 35% with 1 year of data. Corresponding error rates for

overall false positive and negative errors are 10% and 20%, respectively. Lower

error rates can be achieved if schools are the performance unit. The results

suggest that policymakers must carefully consider likely system error rates

when using value-added estimates to make high-stakes decisions regarding

educators.

Keywords: value-added models, performance measurement systems, student learning

gains, false positive and negative error rates

Student learning gains, as measured by students’ scores on pretests and posttests,

are increasingly being used to evaluate educator performance. Known as ‘‘value-

added’’ measures of performance, the average gains of students taught by a given

teacher, instructional team, or school are often the most important outcomes for

performance measurement systems that aim to identify instructional staff for

special treatment, such as rewards and sanctions.

Spurred by the expanding role of value-added measures in educational policy

decisions, an emerging body of research has consistently found—using available

data—that value-added estimates based on a few years of data can be imprecise.

In this article, we add to this literature by systematically examining—from a

design perspective—misclassification rates for commonly used performance

measurement systems that rely on hypothesis testing.
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Ensuring the precision of performance measures has taken on greater

importance with the proposal and implementation of policies that require the use

of value-added measures for higher-stakes decisions. The use of value-added

measures for policy decisions has been fueled by expanded financial support

from the federal government and private foundations. Under the federal Race

to the Top grant program, to which $4 billion has been authorized by the

American Recovery and Reinvestment Act of 2009, a key criterion for selecting

state grantees is that they must use performance measures—based heavily on

student gains—to inform decisions on the professional development, compensa-

tion, promotion, tenure status, and removal of teachers and principals. Indeed,

one of the program’s first grantees, Tennessee, will proceed to use value-

added measures ‘‘for making all critical human capital decisions in [the] state’s

education system’’ (U.S. Department of Education, 2010). Similar reforms are

being financed by hundreds of millions of dollars from the Bill and Melinda

Gates Foundation. With these and other initiatives, the use of value-added mea-

sures is likely to become even more widespread in the coming years.

Given that individual teachers and schools can be subject to significant

consequences on the basis of their value-added estimates, researchers have

increasingly paid attention to the precision of these estimates. A number of

studies have examined the extent to which differences in single-year performance

estimates across educators are due to persistent (or long-run) differences in

performance—the types of differences intended to be measured—rather than to

transitory student-level and classroom-level influences that induce random error,

and thus imprecision, in the estimates (see, e.g., Kane & Staiger, 2002a, 2002b).

Existing research has consistently found that teacher-level and school-level

averages of student test score gains can be unstable over time. Studies have found

only moderate year-to-year correlations—ranging from .2 to .6—in the value-

added estimates of individual teachers (Goldhaber & Hansen, 2008; McCaffrey,

Sass, Lockwood, & Mihaly, 2009) or small to medium-sized school grade-level

teams (Kane & Staiger, 2002b). As a result, there are significant annual changes

in teacher rankings based on value-added estimates (Aaronson, Barrow, &

Sander, 2007; Ballou, 2005; Goldhaber & Hansen, 2008; Koedel & Betts,

2007; McCaffrey et al., 2009).

While previous work has documented instability in value-added estimates

post hoc using several years of available data, the specific ways in which perfor-

mance measurement systems should be designed ex ante to account for instability

of the estimates have not been examined. This article is the first to systematically

examine this precision issue from a design perspective focused on the following

question: ‘‘What are likely error rates in classifying teachers and schools in the

upper elementary grades into performance categories using student test score

gain data that are likely to be available in practice?’’ These error rates are critical

for assessing appropriate sample sizes for a performance measurement system

that aims to reliably identify low- and high-performing teachers and schools.
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We address this precision question both theoretically and empirically. For

the theoretical analysis, we employ a commonly used statistical framework for

calculating value-added estimates using ordinary least squares (OLS) and

Empirical Bayes (EB) methods, and derive associated variance formulas. We

then model a realistic performance measurement system that uses hypothesis

testing to classify educators into performance categories, and we use the variance

formulas to derive equations for calculating system error rates. The formulas

depend on several parameters, and we obtain realistic values for these parameters

from a synthesis of several published value-added studies and data from recent

school-based evaluations. We then calculate system error rates for various

assumed sample sizes by applying the theoretical formulas with these empirically

based parameter values.

Statistical Framework for the Teacher-Level Analysis

The Basic Statistical Model and Assumptions

Our analysis is based on standard education production functions that are often

used in the literature to obtain estimates of school and teacher value-added using

longitudinal student test score data linked to teachers and schools (Harris &

Sass, 2006; McCaffrey, Lockwood, Koretz, & Hamilton, 2003; McCaffrey,

Lockwood, Koretz, Louis, & Hamilton, 2004; Rothstein, 2010; Todd & Wolpin,

2003). We formulate reduced-form production functions as variants of a four-

level hierarchical linear model (HLM; Raudenbush & Bryk, 2002). The HLM

corresponds to students in Level 1 (indexed by i), classrooms in a given year

in Level 2 (indexed by t), teachers in Level 3 (indexed by j), and schools in Level

4 (indexed by k):

Level 1 : Students : gitjk ¼ �tjk þ "itjk ð1aÞ
Level 2 : Classrooms : �tjk ¼ tjk þ !tjk ð1bÞ
Level 3 : Teachers : tjk ¼ �k þ yjk ð1cÞ
Level 4 : Schools : �k ¼ � þ ck : ð1dÞ

In this model, gitjk is the gain score (posttest–pretest difference) for student i in

classroom (year) t taught by teacher j in school k; �tjk , tjk , and �k are level-

specific random intercepts; "itjk , !tjk , yjk , and ck are level-specific iid

Nð0;s2
"Þ, iid Nð0;s2

!Þ, iid Nð0;s2
yÞ, and iid Nð0;s2

cÞ random error terms,

respectively, where the error terms across equations are distributed indepen-

dently of one another; and � is the expected student gain score in the geographic

area used for the analysis—which is assumed to be a school district (but, e.g.,

could also be a state, a group of districts, or a school). Note that the level-

specific intercepts are conceptualized as random in this framework, although

we sometimes treat some intercepts as fixed.
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Although this model uses gain scores as the outcome variable, it is closely

related to an alternative model, the ‘‘quasi-gain’’ model, in which posttest scores

are the outcome variable and pretest scores are a Level 1 covariate. Let b1 denote

the coefficient on the pretest score in the quasi-gain model. If pretest scores

are subtracted from both sides of the quasi-gain model, it becomes a gain-score

model in which there is a pretest covariate with a coefficient of ðb1 � 1Þ . Under

the restriction that b1¼ 1, the quasi-gain model reduces to our benchmark HLM.

Because previous work has found that value-added estimates with and without

this restriction are very similar (Harris & Sass, 2006; McCaffrey et al., 2004),

we maintain this restriction in our benchmark model to allow for simple, trans-

parent estimator, and variance formulas. In practice, there could be precision

gains from permitting b1 to be unrestricted—which, in a gain-score model,

would allow prior achievement levels to account for some of the student-level

variation in current gains.1 Thus, in our empirical analysis, we conduct sensitiv-

ity tests that relax the assumption of b1¼ 1 by including pretest scores as a cov-

ariate in the HLM.

Our benchmark HLM does not include any other student-level or teacher-

level covariates. The bulk of the evidence indicates that demographic char-

acteristics explain very little of the variation in test score gains (Bloom,

Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 2007). Again, we thus

omit covariates to permit straightforward formulas of the considered estima-

tors and variances.

Estimates of tjk in the HLM model are the focus of the teacher-level analysis. A

tjk is interpreted as the expected gain score of a randomly chosen student if

assigned to teacher j. We follow the previous literature in assuming that tjk is con-

stant (persistent) during the evaluation period, so this framework ignores

dynamic growth in teacher performance over time. As can be seen by insert-

ing (1d) into (1c), tjk ¼ � þ ck þ yjk , so tjk reflects (a) the contribution of all

educational and background inputs influencing the expected student test

score gain in the district (�); (b) the contribution of factors common to all

teachers in the same school (ck), such as the influence of the principal,

school resources, and the sorting of true teacher quality across schools; and

(c) the contribution of the teacher net of any shared contribution by all teach-

ers in her school (yjk). As can be seen further from (1a) and (1b), gitjk is

influenced not only by tjk but also by a random transitory classroom effect

!jkt (e.g., a particularly disruptive student in the class), and by a random

student-level factor "ijkt.

In this article, we consider performance schemes that compare estimates of tjk

for all upper elementary school teachers in a hypothetical school district, includ-

ing those from different schools. We assume that teachers teach self-contained

classrooms, where each teacher is assumed to teach a single classroom per year.

For notational simplicity, we assume a balanced design, where data are available

Schochet and Chiang
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for c self-contained classes per teacher (i.e., for c years, so that t ¼ 1; :::; c) with

n new students per class each year (so that i ¼ 1; :::; n) and m teachers in each of

the s schools (so that j ¼ 1; :::;m). For unbalanced designs, the formulas

presented in this article apply approximately using mean values for c, n, and

m (Kish, 1965).

We focus on the upper elementary grades because there is available empirical

evidence on key parameters affecting the precision of value-added estimates, and

pretests are likely to be available for analysis. We note, however, that more pre-

cise value-added estimates could be obtained for middle school teachers who

teach multiple classes per year.

To permit a focused and tractable analysis, we assume a best-case scenario in

which commonly cited difficulties with value-added estimation are resolved or

nonexistent. In particular, we assume vertical test scales (to allow comparisons

across grades), no teacher mobility, and random assignment of students to class-

rooms and schools (to allow for unbiased estimation of differences in tjk).

Assuming this best-case scenario is likely to produce lower bounds for the error

rates that performance measurement systems used in practice are expected to

generate.

The HLM used for the analysis can be considered as modeling the test score

gains of repeated cross sections of students. As discussed in more detail below,

this model is likely to produce similar value-added estimates as the commonly

used Education Value-Added Assessment System (EVAAS) model (Sanders,

Saxton, & Horn, 1997), where longitudinal data are used to directly model the

growth in a student’s test scores over time.

Finally, the above analysis assumes that gain scores are used from a single

academic subject only. However, value-added estimates for upper elementary

school teachers are sometimes obtained using test scores from multiple subject

areas. Our primary analysis assumes a test score from a single subject (or from

highly correlated tests), but in our sensitivity analysis, we examine precision

gains from using multiple tests (as discussed further below).

Considered Estimators

Although maximum likelihood estimators based on the expectation-maximiza-

tion (EM) algorithm are typically used to estimate HLMs, the same estimators

can be obtained through simpler methods due to the balanced design assumed

here. We consider two estimators for tjk using variants of the HLM in (1a) to

(1d). The first is an OLS estimator that is obtained using the following model,

where (1b) is inserted into (1a) and tjk are treated as fixed effects:

gitjk ¼ tjk þ ð!tjk þ "itjkÞ: ð2Þ

This model yields the following OLS estimator:
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t̂jk;OLS ¼ �g::jk ; ð3Þ

where �g::jk ¼
Pc
t¼1

Pn
i¼1

gitjk=cn

� �
is the mean gain score for all students taught by

teacher j in school k over the c years.

The second approach for estimating tjk is an EB approach (see, e.g., Berger,

1985; Lindley & Smith, 1972; Raudenbush & Bryk, 2002). The EB estimator for

tjk is the mean of the posterior distribution for tjk given the data.

There are several EB estimators that could be used for between-school com-

parisons. One estimator, which involves application of the EB approach twice,

uses the four-level HLM from above and is as follows:

t̂jk;EB;Between1 ¼ �y�g::jk þ ð1� �yÞ½�c =g:::k þ ð1� �cÞ
�
g::::�; ð4Þ

where
�
g:::: ¼ �̂ ¼

Ps
k¼1

=
g:::k=s

� �
is the grand district-level mean, �y ¼ s2

y=ðs2
yþ

s2
�gjtÞ is the within-school ‘‘reliability’’ weight ð0 � �y � 1Þ, s2

�gjt ¼ ðs2
!=cÞþ

ðs2
"=cnÞ is the variance of �g::jk conditional on tjk , �c ¼ s2

c=ðs2
c þ s2

��gj�Þ is the

between-school reliability weight ð0 � �c � 1Þ, and s2
��gj� ¼ ðs2

y=mÞþ
ðs2

!=cmÞ þ ðs2
"=cnmÞ is the variance of =

g:::k conditional on �k . This estimator

‘‘shrinks’’ the teacher-level mean toward the school-level mean, which, in

turn, is shrunk toward the grand district-level mean (Raudenbush & Bryk,

2002).

The EB estimator in Equation (4) could lead to the result that a teacher with a

higher value for �g::jk than another teacher is given a lower performance ranking

because she teaches in a lower-performing school (which may be difficult to

explain to educators). Thus, we also consider a second EB estimator that does not

adjust for performance differences across schools. It can be obtained from a

three-level HLM where (1d) is inserted into (1c). This estimator is as follows:

t̂jk;EB;Between2 ¼ �t0 �g::jk þ ð1� �t0 Þ
�
g::::; ð5Þ

where �t0 ¼ ðs2
y þ s2

cÞ=ðs2
y þ s2

c þ s2
�gjtÞ is the between-school reliability

weight ð0 � �t0 � 1Þ. This estimator directly shrinks the teacher-level mean to

the grand district-level mean.

For several reasons related to the clarity of presentation, we adopt the estima-

tor in (5) rather than (4) for our analysis. First, for the system error rate analysis,

we must calculate the variance of the EB estimator, and the variance formula is

very complex for the estimator in Equation (4) (see Berger, 1985). Second, it is

more straightforward to use Equation (5) rather than Equation (4) to specify null

hypotheses for comparing tjk values for teachers across different schools so that

the test statistics (z scores) have zero expectations under the null hypotheses.
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Third, the estimator in Equation (5) is used most prevalently in practice

(Lipscomb, Teh, Gill, Chiang, & Owens, 2010).

A Representative Scheme for Comparing Teacher Performance

In any performance measurement system, there must be a decision rule for

classifying teachers as meriting or not meriting special treatment. One of the

most prevalent value-added models applied in practice is the EVAAS model used

by the Teacher Advancement Program (TAP; see National Institute for

Excellence in Teaching, 2009), which classifies each teacher into a performance

category based on the t statistic from testing the null hypothesis that the teacher’s

performance is equal to the average performance in a reference group (see

Solmon, White, Cohen, & Woo, 2007; Springer, Ballou, & Peng, 2008). Thus,

hypothesis testing is an integral part of the policy landscape in performance

measurement, and forms the basis for our considered scheme for comparing

teacher value-added estimates. We emphasize, then, that the error rate formulas

and empirical calculations of this article pertain only to performance measure-

ment systems that use hypothesis testing to classify educator performance. This

approach does not encompass several other types of decision rules that could be

used, such as identifying teachers whose value-added estimates are simply above

or below fixed thresholds or percentiles of the teacher quality distribution, which

ignores the variance of the estimates.

In particular, this section considers a performance measurement scheme that

addresses the question, ‘‘Which teachers performed particularly well or badly

relative to the average teacher in the school district?’’ The scheme assumes a

classical hypothesis testing strategy for both the OLS and EB estimators. Under

this scheme, the considered null hypothesis is H0 : tjk � ��t:: ¼ 0, where ��t:: ¼Ps
k¼1

�t:k=s

� �
is the mean value of tjk across all teachers in the district. This testing

approach will identify for special treatment teachers for whom the null hypoth-

esis is rejected.2

Using the OLS approach and the estimator in Equation (3), the null hypothesis

for our performance scheme can be tested using the z score zOLS ¼
½ð�g::jk � �g::::Þ=

ffiffiffiffiffiffiffiffiffiffi
VOLS

p
�, where the variance VOLS is defined as follows:

VOLS ¼
s2
!

c
þ s2

"

cn

� �
sm� 1

sm

� �
: ð6Þ

For moderate or large m, the variance in Equation (6) is driven primarily by

the variance of the teacher-level mean (because the second bracketed term is

close to 1). Thus, our considered scheme has similar statistical properties to a

more general scheme where statistical tests are conducted to compare a teacher’s

performance relative to fixed threshold values that are assumed to be measured

without error.
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Using the EB approach and the estimator in Equation (5), it is still

conventional to use classical test statistics to test the null hypothesis (Rauden-

bush & Bryk, 2002, chap. 3). For our performance scheme, the null hypothesis

can be tested with the z score zEB ¼ ½�t0 ð�g::jk � �g::::Þ�=
ffiffiffiffiffiffiffiffi
VEB

p
, where VEB is an

approximation to the variance of the posterior distribution for tjk given the data.

This approximation, which assumes that �̂k ¼ =
g:::k and �̂ ¼ �g:::: are estimated

without error, is defined as follows:

VEB ¼ �t0VOLS

sm

sm� 1

� �
¼ �t0s2

�gjt; ð7Þ

where �t0 is the reliability weight defined above (see Berger, 1985; Gelman, Hill,

& Yajima, 2009).

The variance of the EB estimator in Equation (7) is smaller than the variance

of the OLS estimator in Equation (6) by a factor of �t0sm=ðsm� 1Þ. However, the

z score is smaller for the EB estimator by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t0 ðsm� 1Þ=sm

p
, suggest-

ing that the OLS approach tends to reject the null hypotheses more often—and

thus has more statistical power—than the EB approach. This occurs because as

�t0 decreases, the teacher-level means are shrunk toward the district-level mean

faster than the EB standard errors are shrunk toward zero.

Finally, we assume one-sided rather than two-sided tests, where the direction

of the alternative hypothesis depends on the sign of the z score. For instance, if a

teacher’s value-added estimate is observed to be below average, it is likely that

district officials will then want to test whether the teacher’s true performance is

below average, which naturally serves as the alternative hypothesis for this test.

Accounting for Tests From Multiple Subjects

The above analysis assumes that value-added estimates are obtained using gain

scores from a single academic subject. However, we also consider the case in

which teacher effects are estimated separately for each subject area, and are then

appropriately scaled and averaged to obtain aggregate value-added estimates of a

teacher’s underlying tjk value.

Suppose that gain score data are available for d subject tests per student, so

that nd test score observations are available for each classroom. These d test

score observations are ‘‘clustered’’ within students. Standard methods to calcu-

late the variance of two-stage clustered designs (see, e.g., Kish, 1965) can then

be used to show that the effective number of observations per classroom can

be approximated as follows:

neff � nd=½1þ rdðd � 1Þ�; ð8Þ

where rd is the average pairwise correlation among the d tests. The denominator

in Equation (8) is the design effect and will increase as the correlations between

the subject tests increase.
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To account for multiple tests in the above variance formulas, the effective

class size neff can be used rather than n. Realistic values for d and rd are

discussed below.

Accounting for the Serial Correlation of Student

Gain Scores Over Time

The benchmark HLM uses only contemporaneous information on student test

score gains to estimate the value-added of the students’ current teachers.

However, some models such as EVAAS pool together gain scores from

multiple grades for a given student (see Schochet & Chiang, 2010, for a

more detailed discussion). Because the student-level error term, "itjk , may

be serially correlated across grades, the gains achieved by a teacher’s

current students in other grades reduce uncertainty about the students’

current values of "itjk and, hence, can improve the precision of the value-

added estimates.

Suppose that the HLM in (1a) through (1d) is specified separately for two

consecutive grades, and the two grade-specific models are estimated jointly as

a system of seemingly unrelated regressions (SURs) using generalized least

squares (GLS; see, e.g., Amemiya, 1985). By comparing well-known variance

formulas for the GLS estimator and the OLS estimator (Wooldridge, 2002, chap. 7),

it can be shown that the variance of the SUR estimator is approximately the variance

of the OLS estimator based on the effective number of observations per classroom,

neff2 � n=ð1� r2
t;t�1Þ, wherert;t�1 is the correlation of "itjk across the two grades. In

our sensitivity analysis, we present results using neff2 rather than n, using empirical

values of rt;t�1. As discussed below, empirical values of error correlations across

nonconsecutive grades are very small, so we do not consider the case of pooling

more than two grades together.

Accounting for Additional Precision Gains From

Controlling for Pretest Scores

Student test score gains could vary depending on pretest score values. Thus, addi-

tional precision gains could be realized by including pretest scores as a covariate

in the HLM. The variance formulas can be modified to reflect the presence of this

covariate. For the OLS estimator, the variance formula in Equation (6) reflects

this covariate adjustment if the error variances, s2
! and s2

" , are multiplied respec-

tively by ð1� R2
!Þ and ð1� R2

"Þ, where R2
! and R2

" are the proportions of

the classroom-level and student-level error variance explained by pretest scores.

A similar adjustment can be applied to the variance of the EB estimator. In our

sensitivity analyses, we use empirically based R-square values and apply these

modified formulas.
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Measuring the Reliability of Performance Estimators

The variance formulas presented above have a direct relation to reliability

(stability) measures that the previous literature has used to gauge the noisiness

in value-added estimators (see, e.g., McCaffrey et al., 2009). Parallel to its

usual psychometric definition, reliability in this context is the proportion of

an estimator’s total variance across teachers that is attributable to the ‘‘sig-

nal’’—that is, persistent performance differences across teachers. In our nota-

tion, the reliability of the OLS estimator is �t0 (as defined in Equation (5)

above). We report reliability statistics in the empirical work below, but this

metric is not entirely consistent with our hypothesis testing framework. Thus,

as discussed next, our focus is on false positive and negative error rates to mea-

sure the accuracy of a performance measurement system based on hypothesis

testing.

Calculating System Error Rates

In this section, we discuss our approach for defining system error rates under our

considered testing scheme, and key issues that must be considered when applying

these definitions.

Defining System Error Rates

We define system error rates using false positive and negative error rates from

classical hypothesis testing. To help explain our error rates, consider our scenario

where a hypothesis test is conducted to assess whether a teacher performs signif-

icantly worse than the average teacher in her district using test score data for

c years. Suppose also that a teacher is considered to be in need of special treat-

ment if her true performance level is T gain score standard deviations (SDs)

below the district average (see Figure 1).3 We assume this scenario for the

remainder of this section; symmetric results apply for tests that aim to identify

high-performing teachers.

The Type I error rate (a) is the probability that based on c years of data, the

hypothesis test will find that a truly average teacher (such as Teacher 4)

performed significantly worse than average. Given a, the false positive error rate,

FPRðqÞ, is the probability that a teacher (such as Teacher 5) whose true

performance level is q SDs above average is falsely identified for special

treatment. For a one-tailed z score test, FPRðqÞ can be expressed as follows:

FPRðqÞ ¼ PrðReject H0jtjk � ��t:: ¼ qsÞ ¼ 1� F ½F�1ð1� aÞ þ qs�ffiffiffiffi
V
p � for q � 0; ð9Þ

where s2 ¼ ðs2
c þ s2

y þ s2
! þ s2

"Þ is the total variance of the student gain score,

V is the variance of the OLS or EB estimator, � equals 1 for the OLS estimator

and �t0 for the EB estimator, and Fð:Þ is the normal distribution function.
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Equation (9) makes clear that at any given q > 0, the EB estimator has a larger

false positive error rate than the OLS estimator because ð�=
ffiffiffiffi
V
p
Þ is smaller for

the EB estimator. For teachers who are truly above average, shrinkage causes the

distribution of the EB estimator to be centered at a lower value than the OLS esti-

mator, implying a greater probability that the EB estimator incorrectly identifies

these teachers as low performing.

The overall false positive error rate for the population of average or better

teachers can be obtained by calculating the expected value (weighted average)

of population FPRðqÞ values:

FPR TOT ¼
ð

q�0

PrðReject H0jtjk � ��t:: ¼ qÞf ðqjtjk � ��t:: � 0Þqq; ð10Þ

where f ð:Þ is the density of q for the considered population. Clearly,

FPR TOT � a. For the empirical analysis, we assume that q has a normal distri-

bution with variance Vf ¼ ðs2
c þ s2

yÞ=s2. To calculate the integral in Equation

(10), we used a simulation estimator where we obtained 10,000 random draws

for q from a truncated normal distribution, calculated FPRðqÞ for each draw, and

averaged these 10,000 false positive error rates.

Given a and the threshold value T , the false negative error rate is the

probability that the hypothesis test will fail to identify teachers (such as

Teachers 1 and 2 in Figure 1) whose true performance is at least T SDs

below average. For a one-tailed z score test, FNRðqÞ can be expressed as

follows:

FNRðqÞ ¼ PrðDo Not Reject H0jtjk � ��t:: ¼ qsÞ ¼ F F�1ð1� aÞ þ qs�ffiffiffiffi
V
p

� �
ð11Þ

for q � T < 0. The Type II error rate, ð1� bÞ, equals FNRðTÞ, where b is the

statistical power level. For every q � T < 0, the EB estimator has a higher false

negative error rate than the OLS estimator.

The overall false negative error rate for the population of low-performing

teachers can be calculated as follows:

Teacher ID: 1 2 3 4 5

x x x x x

A = T SDs Below Average B = Average Teacher 

True Teacher Value−Added Measure (Gain Score Units)

FIGURE 1. Hypothetical true teacher value-added measures.
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FNR TOT ¼
ð

q�T<0

FNRðqÞf ðqjtjk � ��t:: � TsÞqq: ð12Þ

Note that in Equation (12) we do not include teachers whose performance

values are between points A and B in Figure 1 (such as Teacher 3). This is

because it is difficult to assess whether failure to identify these teachers should

be regarded as an error or not. Although these teachers do not truly perform

poorly enough for the district to regard them as needing special treatment, their

true performance lies in the range covered by the alternative hypothesis of the

statistical test. Because of this ambiguity, we exclude these teachers from the

error rate calculations, but, in our empirical analyses, we conduct calculations

assuming different threshold values.

We also analyze two additional aggregate error rates—first discussed by

Benjamini and Hochberg (1995)—that have a Bayesian interpretation. First, for

a given a, we define the population false discovery rate, FDR TOT, as the

expected proportion of all teachers with significant test statistics who are false

discoveries (i.e., who are truly average or better). Using Bayes rule, FDR TOT

can be approximated as follows:

FDR TOT � FPR TOT�:5Ð
q

PrðReject H0jtjk � ��t:: ¼ qsÞf ðqÞqq
: ð13Þ

Second, for a given a and T , we define the false non-discovery rate,

FNDR TOT, as the expected proportion of all teachers with insignificant test sta-

tistics who are truly low performers. This error rate can be approximated as

follows:

FNDR TOT �
FNR TOT	 ð1� FðjT js=

ffiffiffiffiffi
Vf

p
ÞR

q

PrðDo Not Reject H0jtjk � ��t:: ¼ qsÞf ðqÞqq
: ð14Þ

Tolerable error rates will likely depend on a number of factors (see Schochet

& Chiang, 2010, for a more extensive discussion). First, they are likely to depend

on the nature of the system’s rewards and penalties. For instance, acceptable

levels are likely to be lower if the system is to be used for making high-stakes

decisions. Second, acceptable error rate levels are likely to differ by stakeholder

(such as teachers, students, parents, school administrators, and policymakers)

who may have different loss functions for weighing the various benefits and costs

of correct and incorrect system classifications. Because it is not possible to define

universally acceptable levels for system error rates, our empirical analysis pre-

sents error rates for different assumed numbers of years of available data and

is agnostic about what error rate levels are appropriate and what types of errors

are more serious.
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We consider Type I and II error rates as well as the overall error rate measures

discussed above. Type I and II error rates provide an upper bound on system error

rates for individual teachers or schools. These rates may be applicable if the

system is to be used for making high-stakes decisions and stakeholders view mis-

classification errors as highly consequential. The Type I error rate may also be of

particular interest to teachers or schools who believe that their performance is at

least average (but who are not sure how much above average), because this rate is

the maximum chance that such a teacher or school will be falsely identified for

sanctions. The Type II error rate may be of particular interest to administrators

and parents who want a conservative estimate of the chances that a very low-

performing teacher will be missed for special treatment and remain in the

classroom without further intervention.

We also present results using the overall error rate measures for those

interested in aggregate misclassification rates for the full population of ‘‘good’’

and ‘‘poor’’ educators. Such interested parties might include designers of

accountability systems whose focus is on the social equity of a performance mea-

surement system. Thus, the Type I and II error rates may be relevant to those

focused on individual teachers and schools, whereas the overall error rates may

be more relevant to those focused on groups of educators.

In order to balance the myriad objectives from above and keep the presenta-

tion of empirical results manageable, we report results from three types of anal-

yses. First, we report Type I and II error rates subject to the restriction that these

two error rates are equal, consistent with an approach of being agnostic about

which type of error is more serious. For given values of c and T , these error rates

can be calculated as follows:

a ¼ 1� b ¼ 1� F
jT js�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðContrastÞ

p
" #

; ð15Þ

where VarðContrastÞ is the variance of the contrast of interest and other terms are

defined as above. Second, we use a grid search using different Type I errors to

calculate and report values for FPR TOT and FNR TOT subject to the restriction

that these two error rates are equal. For these derived values, we also present

FDR TOT and FNDR TOT values. Finally, because some stakeholders may

place different weights on false negatives and positives, we report results on the

number of years of available data per teacher that are required to attain various

combinations of Type I and II errors and FPR TOT and FNR TOT errors.

Statistical Framework for the School-Level Analysis

The statistical framework from above can also be used to identify schools for

special treatment. These methods can be implemented using estimates of

�k ¼ ð� þ ckÞ from variants of the HLM from above. For the OLS approach,
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estimates of �k can be obtained using the following model, where �k and yjk are

treated as fixed effects:

gitjk ¼ �k þ yjk þ ð!tjk þ "itjkÞ: ð16Þ

The resulting OLS estimator is �̂k;OLS ¼ =
g:::k :

The EB estimator for �k can be obtained using the four-level HLM and is

�̂k;EB ¼ �c =
g:::k þ ð1� �cÞ �g::::, where �c is the between-school reliability weight

defined above. Unlike the OLS framework, the EB framework treats �k and yjk as

random rather than fixed.

For the school-level analysis, the null hypothesis for comparing a school’s

performance to the district average is H0 : ck � �c: ¼ 0, where �c: ¼

ð
Ps
k¼1

ck=sÞ is the mean school effect in the district. Using the OLS approach, this

null hypothesis can be tested using the z score zOLS;School ¼ ½ð=g:::k � �g::::Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VOLS;School

p
�, where VOLS;School is defined as follows:

VOLS;School ¼
s2
!

cm
þ s2

"

cnm

� �
s� 1

s

� �
: ð17Þ

The z score using the EB approach is as follows:

z2;EB;School ¼ �cð=g:::k �
�
g::::Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cs2

��gj�

q
�:

h
ð18Þ

Our approach for assessing appropriate sample sizes for the school-based

analysis is parallel to the approach discussed above for the teacher-based

analysis.

Empirical Analysis

In this section, we calculate system error rates for the performance measurement

schemes and estimators considered above, using empirically based values for key

parameters.

Obtaining Realistic Values for the Variance Components

The error rate formulas from above depend critically on the variances of the

specific performance contrasts. These variances are functions of the intraclass

correlations (ICCs) rc ¼ s2
c=s

2, ry ¼ s2
y=s

2, r! ¼ s2
!=s

2, and r" ¼ s2
"=s

2,

which express the variance components in (1a) to (1d) as fractions of the total

variance in gain scores across all students in the district.

In a companion report, Schochet and Chiang (2010) obtained realistic ICC

estimates by reviewing 10 recent studies from the value-added literature that pro-

vide information on at least one ICC, and by conducting primary analyses of data

from five large-scale experimental evaluations of elementary school
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interventions.4 The average ICCs across these studies are the benchmark ICCs

that were used in the analyses.

These analyses show that student heterogeneity is the key source of impreci-

sion in estimating differences in value-added across teachers and schools. On

average, 92% of the total gain score variance is attributable to student differences

within the same classroom ðr" ¼ 0:92Þ. Another source of imprecision stems

from idiosyncratic classroom-level factors, which, on average, account for 3%
of the total variance in gain scores ðr!¼ 0:030Þ. In addition, the proportion of

the total variance that is attributable to persistent, within-school differences in

teacher value-added is about 3.5% ðry ¼ 0:035Þ. School-level factors account for

an additional 1.1% of the gain score variance ðrc ¼ 0:011Þ.

Additional Assumptions for Key Parameters

Other parameters that enter the error rate formulas are the class size ðnÞ, the

number of teachers per school ðmÞ, and the number of schools in the district

ðsÞ. We assume n ¼ 21, which is the median class size for self-contained class-

rooms in elementary schools according to our calculations from the 2003-2004

School and Staffing Survey (SASS).

The assumed value of m depends on the number of elementary grade levels

that are likely to be included in a performance measurement scheme. Under

No Child Left Behind (NCLB), state assessments must begin no later than third

grade, but some states and districts administer assessments to earlier grades.

Therefore, we make the assumption that each elementary school has three grade

levels for which teacher value-added can be estimated, and that these three

grades collectively have m ¼ 10 teachers (or an average of 3.3 teachers per

grade). This assumption yields 70 students per grade level per school, which is

approximately the median fourth grade enrollment of elementary schools in

2006–2007 according to our calculations from the Common Core of Data.

We assume multiple values of s because districts vary widely in size. In par-

ticular, we present results for s ¼ 5 and s ¼ 30, which imply districtwide fourth

grade enrollment in the 81st and 98th percentiles. Our focus on the top quintile of

district size stems from the fact that districts in this quintile educate more than

70% of the nation’s students.

For our sensitivity analysis, we require values of d (the number of tests) and

rd (the average pairwise correlation between student gain scores from multiple

tests). For only two subjects, reading and math, does NCLB mandate assessments

in consecutive grades. Thus, we assume d ¼ 2 for the sensitivity analysis. To

obtain realistic values for rd , we calculated correlations between math and read-

ing fall-to-spring gain scores using the experimental data discussed above. These

correlations range from .2 to .4. Thus, for our analysis, we assume rd ¼ 0:3:
Applying (8) with d ¼ 2, rd ¼ 0:3, and n ¼ 21 yields an effective sample size,

neff , equal to 32 students per classroom.
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The sensitivity analysis that exploits longitudinal student information from

consecutive grades requires values of rt;t�1, the correlation of "itjk across consec-

utive grades. Using data on the population of North Carolina’s students in third,

fourth, and fifth grades, Rothstein (2010) finds that the correlation in gain score

residuals between fourth and fifth grade is �.38 in math and �.37 in reading.

Thus, our sensitivity analysis uses rt;t�1 ¼ �0:38, implying an effective sample

size of neff ;2 ¼ 24:5 students per classroom. Rothstein also finds that the correla-

tion between gain scores in grades three and five ranges from �.02 to .02; thus,

we ignore error correlations across nonconsecutive grade levels.

The sensitivity analysis also requires values for R2
! and R2

" , the R-square at the

classroom and student levels from controlling for pretest scores. In the experi-

mental data discussed above, the average value of R2
" was .17. Because data from

each study covered only 1 year, classroom-level variance components could not

be distinguished from teacher-level variance components, so it was not feasible

to obtain empirical values of R2
!. For the sensitivity analysis, we assume that

R2
! ¼ R2

" ¼ 0:17.

Identifying Threshold Values

A critical issue is the threshold to adopt for defining meaningful performance

differences between teachers or schools (that is, the value of T in Figure 1).

Following the approach used elsewhere (Bloom, Hill, Black, & Lipsey, 2008;

Kane, 2004; Schochet, 2008), we identify educationally meaningful thresh-

olds using the natural progression of student test scores over time.

To implement this approach, we use estimates of average annual gain scores

compiled by Bloom et al. (2008). Because their estimates are expressed in postt-

est score SDs, we converted them to SDs of gain scores by dividing them by .696,

the estimated ratio of the SD of test score gains to the SD of posttest scores from

the experimental data discussed above. On average, annual growth in achieve-

ment per grade is .65 SDs of reading gains and .94 SDs of math gains. Based

on these estimates, we conduct our calculations for the teacher analyses using

threshold values of .1, .2, and .3 SDs. A .2 value represents 31% of an average

annual gain score in reading, or about 4 months of reading growth attained by

a typical upper elementary student; in math, it represents 21% of an average

annual gain score, or about 3 months of student learning. These differences are

large relative to the distribution of true teacher value-added: using our ICC esti-

mates, an increment of .2 SDs in student gain scores is equivalent to the perfor-

mance difference between a district’s 50th percentile and 82nd percentile

teachers, which is consistent with findings from previous literature (Hanushek

& Rivkin, 2010).

We use smaller threshold targets for the school analysis than for the

teacher analysis since variation in school value-added is smaller than the

within-school variation in teacher value-added (that is, rc values tend to
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be smaller than ry values). For school comparisons, we use thresholds that

are half the size of those from the teacher comparisons; the resulting values

of .05, .1, and .15 represent the differences between a district’s 50th percen-

tile school and, respectively, its 68th percentile, 83rd percentile, and 92nd

percentile schools.

Empirical Results

Tables 1 through 7 provide the main empirical findings. The key results can be

summarized as follows:

Finding 1: Using sample sizes typically available in practice, the considered

performance measurement systems for teacher-level analyses will generally

yield Type I and II error rates of at least 20%. Consider a system that aims

to identify high-performing teachers in the upper elementary grades using sample

sizes typically available in practice (1–5 years of data per teacher). Suppose also

that policymakers find it acceptable to set a ¼ 1�b and to set the threshold level

for defining a high-performing teacher at .2 SDs above the average performance

level. In this case, with c ¼ 3 years of data, a scheme that compares a teacher to

the district average would yield a Type I or II error rate of 26% using the OLS

estimator (Table 1). In other words, the system would miss for recognition one

fourth of truly high-performing teachers who are at the 82nd percentile of perfor-

mance in their district, and would erroneously identify for recognition one fourth

of persistently average teachers. The error rates are about 2–5 percentage points

larger for the EB than OLS estimator (Table 1).

Type I and II error rates would exceed one third with only 1 year of data and

would drop to one fifth with 5 years of data (Table 1). The error rates would

increase by about 10 percentage points using a threshold value of .1 SDs rather

than .2 SDs, and would decrease by about 10 percentage points using a threshold

value of .3 SDs (Table 1). Parallel results apply to systems that aim to identify

below-average performers.

Consistent with error rates dropping as a function of c, reliability of the con-

sidered estimators rises with c. The reliability of the OLS estimator (as measured

using �t0 in Equation 5 above) is .38 for c¼ 1, .65 for c¼ 3, .76 for c¼ 5, and .86

for c ¼ 10.

The Type I error pertains to teachers of average performance, and the Type II

error pertains to teachers whose performance is at the selected threshold value.

Misclassification rates for teachers as a group, however, are better captured by

overall false positive and negative error rates. This consideration motivates our

second key finding that is discussed next.

Finding 2: Overall false negative and positive error rates for identifying low-

and high-performing teachers are likely to be smaller than Type I and II error

rates. Suppose that FNR TOT and FPR TOT are restricted to be equal, and

What Are Error Rates for Classifying Teacher

158

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


assume a threshold value of .2 SDs and c ¼ 3 . In this case, FNR TOT and

FPR TOT equal 10% for the OLS estimator (Table 2), whereas a and ð1�bÞ
equal 26% when equated (Table 1). The corresponding error rates using the

EB estimator are 14% and 30%, respectively. A similar pattern holds for other

threshold values

Consistent with these findings, fewer numbers of years of data are required to

achieve various combinations of overall error rates than the corresponding com-

binations of Type I and II error rates (Table 3). For example, using a threshold

value of .2 SDs, the OLS estimator would require about 3 years of data to ensure

that FPR TOT ¼ 0:05 and FNR TOT ¼ 0:20, compared to 11 years to ensure

that a ¼ :05 and ð1� bÞ ¼ 0:20 (Table 3).

Finally, Table 4 shows false discovery and nondiscovery rates using the

FPR TOT and FNR TOT values from Table 2. Assuming c ¼ 3 and a threshold

value of .2 SDs, the OLS estimator yields an FDR TOT value of 13%. This

means that slightly more than one eighth of teachers who are identified for spe-

cial treatment are expected to be false discoveries. For this same scenario,

FNDR TOT is 3%, which means that only a small percentage of all teachers with

insignificant test statistics are expected to be misclassified.

TABLE 1

Teacher-Level Analysis: Type I and II Error Rates That Are Restricted to Be Equal, by

Threshold Value, Scheme, and Estimator

Threshold Value (Gain Score

SDs From the Average)a

OLS

Empirical

Bayes (EB)

Number of years of available data per teacher .1 .2 .3 .1 .2 .3

Compare a teacher to the district average (50 teachers in the district)

1 .43 .36 .29 .45 .41 .37

3 .37 .26 .17 .40 .30 .22

5 .34 .20 .11 .36 .24 .14

10 .28 .12 .04 .29 .14 .05

Compare a teacher to the district average (300 teachers in the district)

1 .43 .36 .29 .45 .41 .37

3 .37 .26 .17 .40 .30 .22

5 .34 .20 .11 .36 .24 .14

10 .28 .12 .04 .29 .14 .05

Note. OLS ¼ ordinary least squares. See the text for formulas and assumptions. Calculations assume

test score data from a single subject area.
aSee Figure 1 in the text for a depiction of these threshold values, which are measured in SDs of gain

scores below or above the average true value-added measure in the appropriate population.
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Finding 3: The empirical results for the teacher-level analysis are robust to

alternative ICC assumptions, the use of two subject tests, the use of two succes-

sive years of gain scores on each student, and the inclusion of controls for pretest

scores. Our benchmark calculations were conducted using the average of the ICC

values reported in Schochet and Chiang (2010). However, because of the uncer-

tainty in the ICC estimates and their critical role in the calculations, we examined

the sensitivity of our main results by varying the key parameters r! and r". As

shown in Table 5, even if r! and r" were much lower than the benchmark values,

the error rates would, in general, remain similar to those in Tables 1 and 2.

Reducing r" from .92 (the baseline assumption) to .80 (a value lower than all but

one estimate in Schochet & Chiang, 2010), or reducing r! to zero (which is

equivalent to assuming that classroom effects are fixed and reflect a teacher’s

true performance in a given year), leaves the Type I and II error rates at a min-

imum of 20% (assuming c ¼ 3). The error rates for FPR TOT and FNR TOT,

however, are somewhat more sensitive to lowering or raising the ICC values than

the Type I and II errors.

Allowing for multiple tests (e.g., math and reading) instead of one test has lit-

tle effect on the error rate estimates (Table 5). For instance, with c ¼ 3, allowing

TABLE 2

Teacher-Level Analysis: Overall False Positive and Negative Error Rates That Are

Restricted to Be Equal

Threshold Value (Gain Score

SDs From the Average)a

OLS

Empirical

Bayes (EB)

Number of years of available data per teacher .1 .2 .3 .1 .2 .3

Compare a teacher to the district average (50 teachers in the district)

1 .24 .20 .16 .33 .30 .27

3 .15 .10 .06 .19 .14 .10

5 .10 .06 .03 .13 .08 .05

10 .06 .02 .01 .07 .03 .01

Compare a teacher to the district average (300 teachers in the district)

1 .25 .21 .17 .33 .30 .27

3 .15 .10 .06 .19 .14 .10

5 .11 .06 .03 .13 .08 .05

10 .06 .02 .01 .07 .03 .01

Note. OLS ¼ ordinary least squares. See the text for formulas and assumptions. Calculations assume

test score data from a single subject area.
aSee Figure 1 in the text for a depiction of these threshold values, which are measured in SDs of gain

scores below or above the average true value-added measure in the appropriate population.
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for two tests decreases the Type I or II error rate from .26 to .24 and the overall

false positive or negative rate from .10 to .08.

Likewise, there are negligible reductions in error rates from using students’

gain scores in current and adjacent years rather than in the current year only

(Table 5). For c ¼ 3, both the Type I or II error rates and the overall false positive

or negative error rates would decline by only 1 percentage point using the long-

itudinal approach. These analyses suggest that our benchmark findings, which

are based on contemporaneous gain score data only, are likely to be applicable

to value-added models such as EVAAS that exploit longitudinal gain score data

on each student.

Error rates decrease only slightly when pretest scores are included as a covari-

ate in the HLM (Table 5). Adding this covariate leads to a decrease in error rates

TABLE 3

Teacher-Level Analysis: The Number of Years of Data Required to Achieve Various

System Error Rates

Type I Error Rate/Overall False Positive Rate

Type II Error Rate/Overall

False Negative Rate

.05 .10 .15 .20

Threshold value ¼ .1 SDsa

.05 78/12 62/8 52/6 45/5

.10 62/8 48/5 39/4 33/3

.15 52/6 39/4 31/3 26/2

.20 45/5 33/3 26/2 20/2

Threshold value ¼ .2 SDsa

.05 20/6 15/4 13/3 11/3

.10 15/4 12/3 10/2 8/2

.15 13/3 10/2 8/2 6/1

.20 11/3 8/2 6/1 5/1

Threshold value ¼ .3 SDsa

.05 9/4 7/3 6/2 5/2

.10 7/3 5/2 4/2 4/1

.15 6/2 4/2 3/1 3/1

.20 5/2 4/1 3/1 2/1

Note: In cells with two entries, the first entry represents the number of years required to achieve Type

I and Type II error rates represented, respectively, by the row and column headers; the second entry

represents the number of years required to achieve overall false positive and false negative rates

represented, respectively, by the row and column headers. Figures are based on the ordinary least

squares (OLS) estimator and assume test score data from a single subject area. The figures correspond

to a scheme where a teacher is compared to the district average with 50 teachers in the district. See the

text for formulas and assumptions.
aSee Figure 1 in the text for a depiction of these threshold values, which are measured in SDs of gain

scores below or above the average true value-added measure in the appropriate population.
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of 1 to 3 percentage points. Thus, our benchmark findings are very close to the

error rates implied by a quasi-gain model.

Finding 4: Using the OLS estimator and comparable threshold values, the

school-level analysis will yield error rates that are about 5 to 10 percentage

points smaller than for the teacher-level analysis. With 3 years of data, the

OLS estimator for comparing a school to the district average would yield a Type

I or II error rate of about 15% using a threshold value of .1 SDs—which is equiv-

alent to setting the threshold for defining a high-performing school at the dis-

trict’s 83rd percentile school (Table 6). The corresponding error rate for

FPR TOT or FNR TOT is about 4% (Table 6). Under this scenario, about 4 years

of data would be required to achieve conventional Type I and II error rates of

a ¼ :05 and 1�b ¼ 0:20, and only 1 year would be required to achieve values

of FPR TOT ¼ 0:05 and FNR TOT ¼ 0:20 (Table 7).

The school-level OLS analysis has more statistical power than the teacher-

level OLS analysis, because school-level gain scores are estimated more

precisely due to larger classroom and student sample sizes. Crucially, these

TABLE 6

School-Level Analysis: System Error Rates That are Restricted to Be Equal, by Threshold

Value

Threshold Value (Gain Score

SDs From the Average)a

Type I ¼ Type

II Error Rate

Overall False Positive

¼ Overall False

Negative Error Rate

Number of years of available data per school .05 .1 .15 .05 .1 .15

Compare a school to the district average (5 schools in the district)

1 .37 .26 .16 .14 .10 .06

3 .29 .13 .05 .07 .03 .01

5 .23 .07 .01 .04 .01 .00

10 .15 .02 .00 .02 .00 .00

Compare a school to the district average (30 schools in the district)

1 .38 .28 .19 .16 .11 .07

3 .30 .15 .06 .08 .04 .01

5 .25 .09 .02 .05 .02 .00

10 .17 .03 .00 .02 .00 .00

Note. See the text for formulas and assumptions. Calculations assume test score data from a single

subject area. Figures are based on the OLS estimator. See the text for formulas and assumptions.
aSee Figure 1 in the text for a depiction of these threshold values, which are measured in SDs of gain

scores below or above the average true value-added measure in the appropriate population.
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precision gains occur because the variances of the OLS estimator are conditional on

fixed values of yjk andck . Statistical precision for the school-level analysis is much

lower for the EB estimator due to the variance contribution of yjk (not shown).

Summary and Conclusions

This article has addressed likely error rates for measuring teacher and school

performance in the upper elementary grades using student test score gain data

and value-added models. This is a critical policy issue due to the increased inter-

est in using value-added estimates to identify high- and low-performing instruc-

tional staff for special treatment, such as rewards and sanctions. Using rigorous

statistical methods and realistic performance measurement schemes, the article

presents evidence that value-added estimates for teacher-level analyses are

TABLE 7

School-Level Analysis: The Number of Years of Data Required to Achieve Various System

Error Rates

Type I Error Rate/

Overall False Positive Rate

Type II Error Rate/Overall False Negative Rate

.05 .10 .15 .20

Threshold Value ¼ .05 SDsa

.05 31/5 24/3 21/3 18/2

.10 24/3 19/2 15/2 13/1

.15 21/2 15/2 12/1 10/1

.20 18/2 13/1 10/1 8/1

Threshold Value ¼ .1 SDsa

.05 8/2 6/2 5/2 4/1

.10 6/2 5/1 4/1 3/1

.15 5/1 4/1 3/1 3/1

.20 4/1 3/1 3/1 2/1

Threshold Value ¼ .15 SDsa

.05 3/2 3/1 2/1 2/1

.10 3/1 2/1 2/1 1/1

.15 2/1 2/1 1/1 1/1

.20 2/1 1/1 1/1 1/1

Note. In cells with two entries, the first entry represents the number of years required to achieve Type

I and Type II error rates represented, respectively, by the row and column headers; the second entry

represents the number of years required to achieve overall false positive and false negative rates

represented, respectively, by the row and column headers. Figures are based on the ordinary least

squares (OLS) estimator and assume test score data from a single subject area. The figures correspond

to a scheme where a school is compared to the district average with 30 schools in the district. See the

text for formulas and assumptions.
aSee Figure 1 in the text for a depiction of these threshold values, which are measured in SDs of gain

scores below or above the average true value-added measure in the appropriate population.
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subject to a considerable degree of random error when based on the amount of

data that are typically used in practice for estimation.

Type I and II error rates for teacher-level analyses will be about 26% if 3 years

of data are used for estimation. This means that in a typical performance mea-

surement system, one in four teachers who are truly average in performance will

be erroneously identified for special treatment, and one in four teachers who dif-

fer from average performance by 3 months of student learning in math or 4

months in reading will be overlooked.

Type I and II error rates pertain to specific teachers who have the greatest

probability of being misclassified—those whose true performance is at the

boundary between different performance ranges that merit different types of pol-

icy action. When the focus is on overall false positive and negative error rates for

the full population of teachers who can be included in the calculations, rates of

misclassification are lower. For example, with 3 years of data, overall misclassi-

fication rates will be about 10%.

Our results are largely driven by findings from the literature and new analyses

that more than 90% of the variation in student gain scores is due to the variation

in student-level factors that are not under the control of the teacher. Thus, mul-

tiple years of performance data are required to reliably detect a teacher’s true

long-run performance signal from the student-level noise. In addition, our anal-

yses likely understate the error rates that would arise in practice because the anal-

yses ignore nonrandom sources of error, such as nonrandom sorting of students to

classrooms and schools or misspecification of the estimation model.

Our results strongly support the notion that policymakers must carefully

consider system error rates in designing and implementing teacher perfor-

mance measurement systems that are based on value-added models. In par-

ticular, policymakers should use judgment in identifying a range of

tolerable error rates and then require each teacher’s evaluation to be based

on sufficient amounts of data for system error rates to lie within the tolerable

range. With the hypothesis testing approach considered in this article, teacher

evaluation systems that rely solely on value-added measures should use more

than 3 years of data per teacher to achieve overall misclassification rates

below 10%. If value-added measures are used in high-stakes personnel deci-

sions—such as tenure—that need to be made on a shorter time-frame than

that required for tolerable error rates, it is especially important to undertake

implementation strategies, discussed below, that can further mitigate these

error rates.

A performance measurement system at the school level will likely yield error

rates that are about 5 to 10 percentage points lower than at the teacher level. This

is because school-level mean gain scores can be estimated more precisely due to

larger student sample sizes. Thus, current policy proposals to use value-added

models for school-level accountability ratings may hold promise from the per-

spective of statistical precision. An important caveat, however, is that estimates

What Are Error Rates for Classifying Teacher

166

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


of performance differences between schools could be biased, due, for instance, to

nonrandom student sorting across schools.

Our findings highlight the need to mitigate system error rates. Misclassifica-

tion rates could be lower if value-added measures were carefully coordinated

with other measures of teacher quality. For instance, value-added estimates may

serve as an initial performance diagnostic that identifies a potential pool of teach-

ers warranting special treatment. While our findings suggest that some teachers

would be erroneously identified during this initial round, a subsequent round of

more intensive performance measurement focused on this pool could further sep-

arate those who do and do not deserve special treatment. Indeed, Jacob and Lefg-

ren (2008) find that value-added measures and principals’ assessments of

teachers, in combination, are more strongly predictive of subsequent teacher

effectiveness than each type of measure alone.

System error rates may be reduced further through a number of implementa-

tion strategies. For instance, developing tests with higher reliability, balancing

student characteristics across classrooms, and assigning each teacher to multiple

classes per year could improve the precision of teacher value-added estimates.

With these and other strategies, value-added measures could be a less error-

prone component of an overall ‘‘toolbox’’ for performance measurement.

It is important to recognize that our findings pertain to a prevalent class of

estimators and performance measurement schemes that conduct hypothesis tests

based on value-added estimates used in isolation. However, spurred by the recent

infusions of funding from the federal government and private foundations, the

development and application of teacher performance measures are ongoing and

evolving, as districts have begun to explore new ways of combining value-added

measures with other types of performance measures. Further research is war-

ranted to determine the error rates generated by these and other schemes.

Although this article has focused on misclassification errors for teachers and

schools, policymakers intend for educator evaluations ultimately to improve stu-

dent outcomes. If personnel decisions are based on performance measures, then

the accuracy of performance classifications will determine the mix of teachers

who are retained, tenured, promoted, and fired, which in turn will affect the dis-

tribution of student outcomes (see, e.g., Bill & Melinda Gates Foundation, 2010).

A direction for future research is to model and quantify the ways in which per-

formance measurement systems with varying levels of error rates can lead to

short- and long-run changes in the distribution of student outcomes.

Notes

1. Some evidence indicates that the quasi-gain model leads to less bias than the

gain-score model when applied to nonexperimental data (Andrabi, Das,

Khwaja, & Zajonc, 2011). However, to focus on precision, our article

abstracts away from nonexperimental sources of bias.
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2. We use the district mean as the cutoff value of the null hypothesis for several rea-

sons. First, it is the cutoff value that is used in practice and is transparent. Second,

defining a cutoff value that, instead, is located at the performance level of a very

high-performing (or low-performing) teacher could lead to unacceptably high

false negative error rates, as defined later in this article. Although it might be pos-

sible to define an ‘‘optimal’’ cutoff value that minimizes a social loss function, we

do not consider this approach because it requires a subjective loss function speci-

fication and has not yet been implemented in practice.

3. We express SDs in gain score units because the HLM pertains to gain scores,

but the results would be identical if the SDs (and our SD targets) were instead

expressed in posttest score SD units.

4. The studies are Goldhaber and Hansen (2008); Hanushek, Kain, O’Brien, and

Rivkin (2005); Kane, Rockoff, and Staiger (2008); Kane and Staiger (2008);

Koedel and Betts (2009); McCaffrey, Sass, Lockwood, and Mihaly (2009); Nye,

Konstantopoulos, and Hedges (2004); Rivkin, Hanushek, and Kain (2005);

Rockoff (2004); and Rothstein (2010). The data for the primary analysis come

from national evaluations of teachers from Teach for America, teachers from

alternative certification programs, early elementary math curricula, reading and

mathematics software products, and reading comprehension interventions.
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