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Multidimensional Assessment of Value
Added by Teachers to Real-World Outcomes

Jennifer Broatch
Sharon Lohr

School of Mathematical and Statistical Sciences,
Arizona State University

Measuring teacher effectiveness is challenging since no direct estimate

exists; teacher effectiveness can be measured only indirectly through student

responses. Traditional value-added assessment (VAA) models generally attempt

to estimate the value that an individual teacher adds to students’ knowledge as

measured by scores on successive administrations of a standardized test. Such

responses, however, do not reflect the long-term contribution of a teacher to

real-world student outcomes such as graduation, and cannot be used in most

university settings where standardized tests are not given. In this paper, the

authors develop a multiresponse approach to VAA models that allows responses

to be either continuous or categorical. This approach leads to multidimensional

estimates of value added by teachers and allows the correlations among those

dimensions to be explored. The authors derive sufficient conditions for maxi-

mum likelihood estimators to be consistent and asymptotically normally distrib-

uted. The authors then demonstrate how to use SAS software to calculate

estimates. The models are applied to university data from 2001 to 2008 on

calculus instruction and graduation in a science or engineering field.

Keywords: binary responses; generalized linear mixed models; multivariate mixed

models; random effects; value-added assessment models

Introduction

On November 23, 2009, President Obama launched an ‘‘Educate to Innovate’’
campaign for excellence in science, technology, engineering, and mathematics
(STEM) education. One of the goals of the campaign is to increase the number
of students graduating from college in a STEM field, a goal that is shared by
many higher education institutions. Numerous government and private organiza-
tions have called for strengthening the STEM pipeline (Government Account-
ability Office, 2006; National Academy of Sciences, 2007; National Science
Board, 2007; U.S. Department of Education, 2009) and increasing the number
of students majoring in STEM fields.
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Value-added assessment (VAA) models are often used to investigate the
‘‘value’’ that individual teachers or schools add to students’ knowledge (Resnick,
2004). These models focus on the gains in a student’s achievement that are
supposedly attributable to the teacher or school rather than to the background
of the student. Some of the VAA models that have been proposed are reviewed
in the Spring 2004 issue of the Journal of Educational and Behavioral Statis-
tics and in McCaffrey, Lockwood, Koretz, and Hamilton (2003). Commonly
used VAA models employ either a univariate response such as a gain score
or repeated measurements on a vertically scaled assessment (Ballou, Sanders,
& Wright, 2004; Raudenbush, 2004; Rowan, Correnti, & Miller, 2002; San-
ders, Saxton, & Horn, 1997). These models require the student responses to
be equated to have the same achievement scale for all time periods. They use
information from the test manufacturers for scaling or other item response
theory methods (Ballou et al., 2004; Martineau, 2006). Mariano, McCaffrey,
and Lockwood (2010) allow longitudinal responses with non-equated
responses by using a Bayesian framework to compute estimates. All these
VAA models are restricted to continuous responses and do not allow catego-
rical responses. They thus cannot be used to assess value added to real-world
long-term outcomes such as graduation with a STEM degree or employment in
a STEM field.

In this paper, we study multivariate value-added assessment (MVAA) models
for assessing the relative contributions of teachers and institutions toward cate-
gorical responses such as graduation with a STEM degree as well as continuous
responses such as test scores. The multivariate models allow us to explore the
relative variability and correlations of the teacher contributions to different, not
necessarily longitudinal, outcomes. They thus present a more comprehensive
picture of teacher effects; since teaching is a complex activity, one might expect
teachers to have different contributions toward different outcomes. Since the
model is not restricted to equated or continuous responses, it can be used in
university settings where scores on standardized tests may be considered less
relevant than real-world outcomes.

The next section presents multivariate mixed VAA models that explicitly
allow non-equated and binary responses. We then derive properties of maximum
likelihood estimators and discuss hypothesis tests for the covariance components.
These theoretical results are needed so that statistical inferences can be made
about the parameters and teacher effects. An important component of this
research is making the methodology accessible for use by educational research-
ers and practitioners, and we provide code in SAS1 software for computing esti-
mates from the MVAA models. We then apply the models to estimate calculus
teacher effects on calculus grades and on student graduation with a STEM degree
and show that the multivariate model provides information that would not be
available in a univariate approach. We conclude with a discussion of the uses and
limitations of the models.
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MVAA Models

We begin by stating the model when all responses are continuous, and then
extend the model to allow binary or categorical responses. Let yi ¼
½yi1; . . . ; yit#0 be the vector of measurements on student i for i ¼ 1; . . . ; n and
response k ¼ 1; . . . ; t. The t responses can be any continuous response measures,
for instance, test scores in different classes, assessments of attitudes toward
mathematics, or grade point average. Therefore, the model estimates a different
effect for teacher j for each response k, rather than one overall estimate for the
teacher. This eliminates scaling issues from other VAA models and recognizes
the multidimensional nature of a teacher’s contribution to student achievement.
Let !jk be the latent effect of teacher j on response k, for j ¼ 1; . . . ;m and k ¼
1; . . . ; t. Then the multivariate latent vector for teacher j is !j ¼ ð!j1; . . . ; !jtÞ0

and the full vector of latent effects for the m teachers is ! ¼ ð!01; . . . ;!0mÞ
0. For

simplicity of notation, we assume in this section that each student has complete
data for all t responses. This restriction is not needed for the model to be fit. We
discuss the problem of missing data later, and in fact the data set we analyze in
this paper has missing data.

We use a multivariate mixed model framework to analyze yi, the t responses
for student i. This is a form of the general model proposed by McCaffrey, Lock-
wood, Koretz, Louis, and Hamilton (2004); a similar model was independently
studied by Mariano et al. (2010). Since the primary interest for this research is
in teacher effects, we only consider students within one school; extensions are
readily made by including extra terms for random effects of schools or districts.
The MVAA model for student i is

yi ¼ Xi"þ Si!þ εi; ð1Þ

where Xi is a ½t ' ðpþ 1Þ# matrix of coefficients for student i. The matrix Xi can
include time-varying covariates such as number of hours worked as well as time-
invariant covariates such as gender. The vectors of student-level errors, εi, are
assumed to be independent Nð0;RiÞ random vectors, where the (k, l) entry of
Ri is rkl. The other terms in the model are explained below.

The ðt ' tmÞ matrix Si indicates which teachers instruct student i. Let

Si ¼ ½S0i1; . . . ;S0it#
0 where Sik indicates which teachers may affect response k of

student i. For multivariate responses that are not longitudinal, the elements of
Sik can be simple indicators. When the t responses are from successive time peri-
ods, the vector Sik may also include information from user-specified persistence
parameters a, containing the value 1 to indicate the presence of the random
effect for the teacher for time k and the value alk to indicate the diminished
effect for the teachers in times l ¼ 1; . . . ; k ( 1 on the response at time
k (Lockwood, McCaffrey, Mariano, & Setodji, 2007; McCaffrey et al., 2004;
Sanders et al., 1997). To see the structure of Si, suppose there are m ¼ 4 teachers
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and t ¼ 2 responses. Then the random vector of teacher effects is

! ¼ !11 !12 !21 !22 !31 !32 !41 !42½ #0: If student i took teacher 3 for k ¼ 1, then

Si1 ¼ 0 0 0 0 1 0 0 0½ #:

If that same student took a class from teacher 2 for k ¼ 2, then

Si2 ¼ 0 0 0 1 a1;2 0 0 0½ #:

The structure for Si given above presumes the effect for a teacher for response 1
is scaled by fixed value a1;2 to obtain the effect for response 2. Mariano et al.
(2010) instead specify a vector of t ( l þ 1 teacher effects for a teacher at time
l on future responses, allowing the covariance matrix G to capture persistence of
teacher effects. A scaling factor a might be useful in other situations as well,
allowing for fractional instruction by different teachers for each response by
adjusting the entries of Sik to indicate the appropriate proportion of instruction.
Alternatively, teachers might instruct students in regular or remedial classes and
a might be a factor for remedial education.

As pointed out by Mariano et al. (2010), a multivariate model that allows a
general covariance structure for G allows much more flexibility for the random
teacher effects of the m teachers. Instead of having a univariate effect for teacher

j, we allow the effect of teacher j to be multidimensional with !j ¼ ½!j1; . . . ; !jt#
0

so that the model in Equation 1 will estimate a different random effect for
teacher j ¼ 1; . . . ;m for each response k ¼ 1; . . . ; t. A multivariate teacher
effect acknowledges that teacher contributions are multidimensional; a teacher
may well have a different effect in algebra I than in algebra II and may have
different effects even on equated tests if those tests are given in different time
periods. We would expect, however, the components of the teacher effect to
be correlated, and therefore set covð!jÞ ¼ Gj where Gj is a nonnegative definite

matrix. Note that a univariate teacher effect may be written as a special case of

the multivariate structure by setting Gj ¼ s2
!110, where 1 is a t-vector of ones.

We assume teachers are independent so that ! ¼ ½!01; . . . ;!0m#
0 ) Nð0;GÞ with

G ¼ diagðG1; . . . ;GmÞ where all Gj are assumed equal:

Gj ¼
g11 g12 . . . g1t

..

. ..
.

g1t g2t . . . gtt

2

64

3

75: ð2Þ

The model in Equation 1 considers t potentially different responses that do not
require time ordering. The structure of the matrix G allows all effects of the same
teacher to be correlated, even if they are teaching different subjects or the
response is measured on a different scale.

The full model for all students i ¼ 1; . . . n is

y ¼ X"þ S!þ ε; ð3Þ
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where y ¼ ½y01 . . . y0n#
0 is the ðtn' 1Þ response vector, X ¼ ½X01; . . . ;X0n#0 is the

tn' ðpþ 1Þ coefficient matrix for " ¼ ½b0; b1; . . . bp#
0, S ¼ ½S01; . . . ; S0n#0 is the

tn' tm coefficient matrix for the latent teacher effect !ðtm'1Þ, G is defined

before Equation 2, and R ¼ diagðR1; . . . ;RnÞ. It is assumed that ! and ε are
uncorrelated. Hence, VðyÞ ¼ V ¼ SGS0 þ R.

The covariate matrix X can include covariates for both students and teachers
through the teacher indicator matrix S. Let "s be a p1-vector of parameters
associated with student-level covariates, let "t be a p2-vector of parameters

associated with teacher-level covariates, and let " ¼ ð"0s "0tÞ0. Partition
X ¼ Xs ST½ #; where Xs is a tn' p1 matrix of covariates for the students and
T is a tm' p2 matrix of covariates available for the teachers. As with the stu-
dents, the covariates for the teachers can be time-varying or time-invariant. Then
ST"t represents the effect of the teacher covariates on the student responses.

Our primary interest in this paper is using MVAA models for situations in
which the responses are not necessarily longitudinal, but capture different aspects
of teacher contributions. In many university settings, standardized test scores are
unavailable. We therefore want to use a more flexible model that still incorpo-
rates different teacher effects for different responses, but allows those responses
to be quantities other than test scores.

The model in Equation 3 assumes that all responses are continuous and nor-
mally distributed. We employ a generalized linear mixed model (GLMM) to
allow binary or categorical responses. For binary responses, we adopt the contin-
uous response model (3) for an unobservable latent trait ~y:

~y ¼ X"þ S!þ ~ε; ð4Þ

where ! ) Nð0;GÞ and ~ε ) Nð0;RÞ. The binary response is defined to be
yij ¼ 1 if the latent variable ~yij > 0. To maintain the identifiability of the para-

meters, we take Ri to be a correlation matrix. The other terms in the model are
defined as in Equation 3. The GLMM contains the linear mixed model inside the
inverse link function:

E½yj!# ¼ g(1ðX"þ S!Þ; ð5Þ

where gð*Þ is the differentiable monotonic link function and ! ) Nð0;GÞ. We
employ a multivariate probit link function for a binary response, following the
recommendation of McCulloch (1994) and Rabe-Hesketh and Skrondal
(2001). If responses are of mixed type, we use the identity link for the continuous
responses and the probit link for the binary responses.

Under this setup, the likelihood function for a bivariate binary response is

Lð";G;RÞ ¼
Z Yn

i¼1

f ðyij!Þð2"Þ
(mjGj(1=2exp (!0G(1!

2

! "
d!; ð6Þ
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where f ðyij!Þ, the conditional density of the binary responses yi, is computed
using

Pðyi1 ¼ 1; yi2 ¼ 1j!Þ ¼ Pð~yi1 > 0; ~yi2 > 0j!Þ ¼
Z 1

0

Z 1

0

hðwÞdw;

and hðwÞ is the density function of a NðXi"þ Si ~!;RiÞ random vector. The
conditional probabilities for the other outcomes are calculated similarly.

Evaluating the likelihood in Equation 6 requires calculating a tm-dimensional
integral; if m and n are large, as required for the asymptotic theory to be valid, the
integrand contains a product of a large number of factors that are all less than one,
so that the product will be numerically indistinguishable from zero. Evaluating
the integral using a Monte Carlo method, then, would result in an evaluated like-
lihood of zero. Because of the complexity of the structure of the covariance

matrix, V ¼ SGS0 þ R, quadrature methods such as Gauss-Hermite integration
are also impractical because the dimensionality of the integral cannot be reduced.

We therefore adopt the penalized quasi-likelihood approach used in SAS
PROC GLIMMIX (SAS Institute Inc., 2008) to approximate the maximum
likelihood estimates (Breslow & Clayton, 1993; Wolfinger & O’Connell,
1993). The method uses a first order Taylor series expansion of E½yj!# from

Equation 5 about ~" and ~! which yields:

g(1ðX"þ S!Þ + g(1ðX~"þ S~!Þ þ ~#Xð"( ~"Þ þ ~#Sð!( ~!Þ;

where

~# ¼ qg(1ðxÞ
qx

! "

~";~!

is a diagonal matrix of derivatives of the conditional mean evaluated at the
estimates in the scale of the pseudodata (~" and ~!) and x ¼ X"þ Z!. Then the
pseudoresponse is

P ¼ ~#
(1½y( g(1ðX~"þ Z~!Þ# þ X~"þ Z~!:

Therefore, a standard linear mixed model can be used with the pseudoresponse P.
We study properties of estimators from these models in the next section.

One concern associated with penalized quasi-likelihood methods for fitting
models with binary responses is potential bias of the parameter estimates. Rodrı́-
guez and Goldman (2001) exhibited substantial bias for penalized quasi-
likelihood estimates of variance components in their simulation study of nested
binary data with few observations per group. Pinheiro and Chao (2006), however,
noted that the bias is minimal in situations with larger group sizes. While the
model in Equation 4 is not nested, class sizes are generally larger than the group
sizes studied by Rodrı́guez and Goldman (2001), so we do not expect bias to be a
serious problem. We are currently studying other computational methods for the
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problem including higher order Laplacian approximations and adaptive quadra-
ture methods.

Maximum Likelihood Estimation and Hypothesis Tests in the
MVAA Model

Much has been written on properties of maximum likelihood estimators in
nested models (Demidenko, 2004; Verbeke & Molenberghs, 2000). Several arti-
cles on VAA models claim that the estimators in general mixed models are con-
sistent and asymptotically normal; they cite as their justification a limit theorem
that assumes that the response vector y can be partitioned into mutually indepen-
dent subvectors yi, for i ¼ 1; . . . l with l!1 (Berkhof & Snijders, 2001; Doran
& Lockwood, 2006; Goldstein & Thomas, 1996; McCaffrey et al., 2004). Such a
partitioning is possible for the hierarchical models considered in Hartley and Rao
(1967) and Miller (1977), but it cannot be done for the general mixed model in
Equation 3 because the matrix S may have more than one entry in each row and
because the matrix G is not diagonal. In this section, we state conditions under
which the maximum likelihood estimators are consistent and asymptotically nor-
mally distributed.

The maximum likelihood estimators for the model in Equation 3 are straight-
forward to write down from standard theory. The maximum likelihood estimator
of " is

"̂ ¼ ðX0V̂(1
XÞ(1X0V̂

(1
y ð7Þ

and the maximum likelihood estimator of the covariance parameters y1; . . . ; yq,
where each yl corresponds to one of the parameters gjk or rjk , satisfy

ðy( X"Þ0V(1 qV

qyj
V(1ðy( X"Þ ( tr V(1 qV

qyj

! "
¼ 0;

for j ¼ 1; . . . ; q. The empirical best linear unbiased predictor of the vector of
teacher effects, !, is calculated using results in Demidenko (2004) by substitut-
ing the maximum likelihood estimators for the unknown parameters " and $:

!̂ ¼ ĜS
0
V̂
(1½I( XðX0V̂(1

XÞ(1X0V̂
(1#y: ð8Þ

Theorem 1 states necessary conditions for the consistency and asymptotic nor-
mality of the maximum likelihood estimators. Because CovðyÞ ¼ V has a com-
plicated structure in both univariate and multivariate VAA models, we cannot
directly apply standard theorems for the asymptotic distribution of maximum
likelihood estimators that rely on having independent random vectors. Instead,
we use a theorem of Mardia and Marshall (1984) for spatial models to establish
consistency and asymptotic normality of the estimators of the covariance
parameters.
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Theorem 1: Consider the model in Equation 3, with V ¼ SGS0 þ R. Suppose that each
class has at least one student and that the number of students in each class is
bounded by a finite constant K. Let $ ¼ ðy1; . . . ; yqÞ0 denote the distinct
covariance parameters in G and R and let

Vi ¼
qV

qyi
;

for i ¼ 1; . . . ; q. It is assumed that the parameter space for " and $ is an open

subset of <pþqþ1. Suppose that for all i; k ¼ 1; . . . ; q,

aik ¼ lim
n!1

tik

ðtiitkkÞ1=2
;

exists, where tik ¼ trðV(1ViV
(1VkÞ and A ¼ ½aik # is positive definite. Also

suppose that limn!1ðX0XÞ(1 ¼ 0. Let "̂n and $̂n be the maximum likelihood
estimators of " and y. Then

B1=2
n

"̂n

$̂n

 !

(
"

y

 !" #

!d Nð0; IÞ;

where Bn is block diagonal with blocks X0V(1X and (1/2)T, and T has [i, k]
element tik .
The theorem is proven in Appendix A. The condition that A is positive

definite is equivalent to the asymptotic identifiability of the estimators ŷi for
i ¼ 1; . . . ; q. This will be met in most data sets. One situation in which the
assumption will not be met, however, is if each teacher has only one student
so that S ¼ I. If yj ¼ gik and y‘ ¼ rik , then

tj‘ ¼ tjj ¼ t‘‘:

In that case, A is not positive definite and the estimators for the components of G
are confounded with the estimators for the components of R: With the structure
above, where the yj’s are the elements of the matrices G and R, we can write

V ¼ SGS0 þ R ¼
Pq

j¼1 yj%j, and the model will be identifiable when the

matrices %j are linearly independent for j ¼ 1; . . . ; q.

Since the maximum likelihood estimators are consistent and asymptotically
normal, several tests may be used for hypotheses about the parameters in ",
G, and R (Lehmann, 1999). These tests are asymptotically equivalent. In the
following, we let $ denote the vector of covariance parameters in G and R and

let Y ¼ ð"0$0Þ0. We consider the null hypothesis

H0 : CY ¼ d; ð9Þ

where the null hypothesis corresponds to values in the interior of the parameter
space and C has full rank.
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The Wald test relies on the asymptotic normality of the estimators. Let

X 2
W ¼ ðCŶ( dÞ0fCB̂

(1

n C0g(1ðCŶ( dÞ;

where Bn is defined in Theorem 1. Then, under the conditions in Theorem 1, X 2
W

converges to a w2 distribution with rankðCÞ degrees of freedom under the null
hypothesis.

The likelihood ratio test statistic for the null hypothesis in Equation 9 is

X 2
LR ¼ (2‘ðŶ0Þ þ 2‘ðŶÞ; ð10Þ

where the log likelihood function is

‘ðYÞ ¼ c( 1

2
ln ðjVjÞ ( 1

2
ðy( X"Þ0V(1ðy( X"Þ: ð11Þ

Here, Ŷ is the maximum likelihood estimator of Y, and Ŷ0 is the maximum
likelihood estimator ofY under the linear restrictions in Equation 9. Again, if the

conditions of Theorem 1 are met, X 2
LR converges to a w2 distribution with rankðCÞ

degrees of freedom under the null hypothesis.
Thus, under the conditions in Theorem 1 for the model in Equation 3, the stan-

dard Wald and likelihood ratio tests may be used for hypotheses about " and
$ that are in the interior of the parameter space. Hypotheses such as
H0 : g11 ¼ g12 and H0 : g12 ¼ 0 are in the interior of the parameter space so that
the tests are asymptotically correct. The results of Theorem 1 do not apply to
hypotheses such as H0 : G ¼ 0 or H0 : g11 ¼ 0, however, since these are on the
boundary of the parameter space. For completely nested models, Theorem 3 of
Self and Liang (1987) can be used to obtain appropriate critical regions for
hypotheses that are on the boundary of the parameter space. However, among the
regularity conditions listed for that theorem is the requirement that observations
are independent and that condition is not met for these models. Because of
Theorem 1, though, if one considers an extended parameter space, comparing the

likelihood ratio and Wald test statistics to a w2 distribution with rank (C) degrees
of freedom will give a conservative test when the null hypothesis is on the
boundary of the parameter space.

For binary responses and the model in Equation 5, the likelihood ratio test
statistics will not be valid since a pseudo-likelihood is used rather than a
likelihood. We use a Wald test for binary responses.

Computation in SAS Software

This section discusses computational challenges for multivariate VAA models
and gives sample code for computing estimates in SAS software. As stated above,
the MVAA models do not have hierarchical structure, so the covariance matrix V
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does not have a block diagonal form. The off-diagonal entries in G, especially,
make the problem of calculating maximum likelihood estimates complex.

Several authors have solved the computational problem by adopting a simpler
covariance structure. The models presented in Doran and Lockwood (2006) for
VAA models in the R statistical software package allow the student responses to
be correlated but do not allow the teacher effects to be correlated. Tekwe et al.
(2004) agreed that it would be a ‘‘more natural assumption’’ to allow the teacher
effects to be correlated and provided sample code in SAS that allows for this cor-
relation. Their model, however, assumes that each teacher has a different covar-
iance matrix Gj, leading to a total of mtðt þ 1Þ=2 covariance parameters for the
teacher effects alone; the assumptions in Theorem 1 are not met in this situation.

Mariano et al. (2010) used Bayesian methods to compute estimates of parameters
and teacher effects in a multivariate model with continuous responses. The Bayesian
computations have the advantage that they will almost always produce parameter
estimates and can be implemented in readily available Bayesian modeling software
packages. If the primary interest is in the regression parameters ", using a nonin-
formative prior will generally give Bayesian estimates that are very close to the
maximum likelihood estimates. The estimates of G and R, however, may be sen-
sitive to the choice of prior distribution (Gelman, 2006). In some situations, the
predictions of teacher effects, which depend on the estimates of G and R, may
also be affected by instabilities in the estimated covariance parameters.

From a practical standpoint, we believe that it is useful to have methods for
computing maximum likelihood estimates as an alternative to Bayesian computa-
tions: The maximum likelihood estimators have the asymptotic properties shown
in Theorem 1, maximum likelihood methods are familiar to persons in a wide vari-
ety of fields, they do not rely on a possibly subjective specification of a prior dis-
tribution, and they do not require expertise in Markov Chain Monte Carlo methods
to fit the models. The methods we present below use SAS software to calculate
maximum likelihood estimates, so they are usable by anyone with access to that
standard software package. Computations in SAS software have the additional
advantage that the SAS procedures have been written to reduce numerical errors.
For example, SAS PROC MIXED uses the stable Newton–Raphson algorithm for
iterative calculation of variance parameters and a modified sweep-based algo-
rithm to calculate the fixed effects (Wolfinger, Tobias, & Sall, 1994).

Although the estimates can be calculated in SAS software, for large data sets
the user may need to increase the amount of memory available to SAS. At pres-
ent, the computations in SAS do not scale to extremely large data sets. SAS
PROC HPMIXED, which uses sparse matrix techniques to solve large mixed
model problems, does not currently have the capacity to use the covariance struc-
ture we specify, although PROC HPMIXED can be used to obtain initial esti-
mates of the diagonal elements of G and R.

There are two levels of random effects in the models, one for teachers and the
other for students. To calculate both of these in SAS PROC MIXED, which will
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be used when all responses are continuous, we use the RANDOM statement for
the teachers and the REPEATED statement for the students. In SAS PROC
GLIMMIX, used for binary and categorical outcomes, two RANDOM statements
are listed. The standard variance structures for the RANDOM statement such as
compound symmetry do not allow a correlation among the random teacher effects,
so we must define the structure explicitly. Consider the matrix Gj in Equation 2
with t ¼ 2. There are three variance components of interest: g11, g22, and g12.
Each block Gj is the same, for j ¼ 1; . . . ;m. In SAS PROC MIXED, this structure

is achieved using the variance structure ‘‘type¼LIN(qg)’’ in the RANDOM state-

ment where qg is the number of estimated variance components in G. For the

general VAA model in Equation 3, qg ¼ tðt þ 1Þ=2; if t ¼ 2 and qg ¼ 3,

G ¼ g11A11 þ g22A22 þ g12A12;

where Aij ¼ blockdiagð#ijÞ and where #ij is the t ' t matrix with 1 in the (i, j)
and (j, i) elements and 0 elsewhere. The A matrices can be input into SAS PROC
MIXED or GLIMMIXED using the ‘‘ldata’’ command with either the full
matrices or a dense form; code for creating the matrices is given in Appendix
B. The user should verify that the estimated G matrix is positive definite.

Value Added in Calculus Instruction

We now apply the models to data from a large public university. The study
includes students who entered the university between fall 2000 and fall 2003 and
who took at least one of the courses Calculus with Analytic Geometry II or III.
These semesters were chosen since entry in those semesters allows at least 5.5
years for degree completion. The study, as with any VAA model, requires the
students be linked to a teacher for every class; Broatch (2009) described the steps
taken to resolve inconsistencies and link the data sets.

In this section, we present two models: (1) a model with both responses con-
tinuous, with yi1 ¼ course grade in Calculus II for student i and yi2 ¼ course
grade in Calculus III for student i, and (2) a model in which yi1 ¼ course grade
in Calculus III for student i and yi2 ¼ 1 if student i graduated with a STEM
degree before fall 2009 and yi2 ¼ 0 otherwise. Scores from a common final
exam were unavailable, so course grade was used as a response indicating student
achievement in the course. Tables 1 and 2 list the response variables and covari-
ates available for the analysis.

For the first analysis with responses grade2 and grade3, only 24 instruc-
tors who taught both Calculus II and Calculus III were considered because
of memory restrictions. The student information from the 2,051 students of
those 24 teachers was then retained. Not all students took both classes at the
university; many students take Calculus II in high school, while others do not
continue on to Calculus III after taking Calculus II; thus, the data set used for
the analysis had missing values. The model in Equation 3 may be fit to a
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data set with incomplete responses, making use of the available data for
students with only one response. The model accounts for the missing data
in three ways: through the covariance of the response in R, through the
dependence with other students of that teacher, and through student covari-
ates in X. While the multivariate approach presented in this paper allows
inclusion of data from students with only one response and thus reduces
potential bias that might result if their data were completely excluded, it does
not explicitly model the missing data mechanism. McCaffrey and Lockwood

TABLE 1
Description of Student-Level Response Variables and Covariates

Variable
Name Description

grade2 Calculus II grade, in decimal scale from 0 to 4
grade3 Calculus III grade, in decimal scale from 0 to 4
stem ¼ 1 if student graduated with STEM degree, 0 otherwise
instructor_id Instructor ID for Calculus II/III
semester Semester in which class was taken
acadlevel Pre-College ¼ 0, Freshman ¼ 1, Sophomore ¼ 2, Junior ¼ 3, Senior ¼ 4
major Declared major at the time of the class
res Live in a residence hall information as a freshman? Yes ¼ 1, No ¼ 0
ethnic Ethnicity: A ¼ Asian, H ¼ Hispanic, B ¼ Black, N ¼ Native American,

W ¼ White
gender Gender of student: F ¼ female, M ¼ male
hsgpa High school grade point average
citizen Citizenship status ¼ 1 if United states citizen, 0 otherwise
SATQ/

SATV
SAT score: quantitative and verbal

ACTQ/
ACTV

ACT score: quantitative and verbal

TABLE 2
Description of Instructor-Level Covariates

Variable Name Description

title Faculty title: lecturer, assistant professor, etc.
gender_in Gender of instructor: M/F
ethnic_in Ethnicity of instructor
years Number of years teaching
degree_in Degree of instructor: Masters/Ph.D.
field_in Degree field of instructor
tdegree Year of terminal degree of instructor
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(2011) studied pattern-mixture and selection models for missing data in VAA
models and found that the estimates of teacher effects appear to be relatively
robust to missing data assumptions.

Table 3 presents the estimates of the fixed effects in the continuous model,
omitting covariates that were not significant. No teacher covariates were sig-
nificant in any of the models we fit. The covariate SATQ was significant, but
it was not included since the covariate was missing for a large number of
observations. Gender was also not significant in the full model, although it was
significant in a model with no other covariates; in the full model, the covariate
hsgpa explained the variability that otherwise would be explained by gender
because female students have higher high school grade point averages. We
also tested the null hypothesis that the slopes are the same for the two
responses: Citizen is the only covariate with a significant difference between
the grade2 parameter and the grade3 parameter (p-value ¼ :0495). Residual
diagnostics using the marginal and conditional residuals revealed no patterns
or other evidence of model inadequacy.

The estimated covariance parameters for the model are

Ĝj ¼
0:21 ð0:07Þ 0:12 ð0:05Þ
0:12 ð0:05Þ 0:11 ð0:04Þ

# $
and R̂i ¼

1:45 ð0:05Þ 0:72 ð0:06Þ
0:72 ð0:06Þ 1:27 ð0:05Þ

# $
;

where the standard errors are provided in parentheses. For each response, the var-
iance component due to the students is much larger than the variance component
due to the teachers. The correlation between the effects is also high at both levels:
rG ¼ :80 and rR ¼ :53. Figure 1 shows the bivariate predicted random teacher
effects for the model with responses grade2 and grade3.

A likelihood ratio test of H0 : g11 ¼ g22 resulted in X 2
LR ¼ 3:7 with p-value of

.054. The covariance term for the teachers, g12, is significantly different from 0

TABLE 3
Fixed Effects Estimates and Standard Errors in the Continuous Model

Covariate grade2 Estimate Standard Error grade3 Estimate Standard Error

Intercept (1.89 0.31 (1.87 0.30
ethnic ¼ A 0.12 0.11 0.07 0.10
ethnic ¼ B (0.52 0.20 ( 0.46 0.18
ethnic ¼ H (0.02 0.09 (0.04 0.09
ethnic ¼ N (0.83 0.20 (0.72 0.17
citizen ( 0.04 0.15 ( 0.39 0.14
hsgpa 1.18 0.07 1.25 0.07
res 0.08 0.06 0.19 0.06

Note: The default category for ethnicity is ethnic ¼ W.
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(X 2
LR ¼ 14:1, p-value ¼ .0002). The hypothesis that g11 ¼ g22 is reasonable in

this analysis since the responses are essentially the same variable measured for
different classes.

The second analysis jointly models a continuous and binary response,
with yi1 the value of grade3 and yi2 the value of stem. Again, different link func-
tions can be used to allow for a variety of responses so the method is not
limited to continuous and binary responses. Because the scale parameter for
individuals is not identifiable with a binary response, we set r22 ¼ 1. See
Rabe-Hesketh and Skrondal (2001) for a general discussion of identifiability in
probit-normal models. We included all 54 Calculus III instructors in the data set
for this analysis, along with the 3,407 students who took Calculus III. Table 4
displays the estimates of the fixed effects, which are similar in direction to
those in Table 3. The coefficients are not exactly the same for response grade3,
however, because a larger data set was available for the second analysis.

The estimated covariance parameters for the model with responses grade3 and
stem are:

Ĝj ¼
0.11 (0.03) -0.04 (0.02)

-0.04 (0.02) 0.09 (0.03)

#

and R̂i ¼
1:27 ð0:03Þ 0:33 ð0:02Þ
0:33 ð0:02Þ 1:00 ð((Þ

# $
;

"

where the standard errors are provided in parentheses. Since the two
responses are measured on different scales, the choices for G are limited.
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FIGURE 1. Predicted random teacher effects for responses of grades in Calculus II/III.
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The models must include separate g11 and g22 parameters. Because the model
was fit using pseudo-likelihoods, a likelihood ratio test cannot be used to test
whether g12 ¼ 0. The Wald test indicates that g12 is marginally significant at
the .05 level.

Again, the variance components due to the students are substantially larger
than the variance components due to the teachers, and the correlations of the
student responses and teacher effects appear to be necessary in the model. The
correlation within students for the responses is positive (rR ¼ :30) as expected;
one would expect students who receive higher grades in calculus to be more
likely to graduate with a STEM degree. The unexpected result is that while
rR > 0, the correlation between responses for the random teacher effects is neg-
ative (rG ¼ (:38). Figure 2, displaying the bivariate predicted random teacher
effects for the model with responses grade3 and stem, illustrates this negative
correlation. Teachers with the largest positive effect for grade3 have the larg-
est negative effect for stem. The estimated random effects for the teachers are
therefore measuring very different aspects of their contributions to student out-
comes. Because of the observational nature of the data set, we cannot say why
this phenomenon occurs. Grade inflation is one possible explanation. It is
possible that some teachers who give higher grades may be less inspiring so
their students decide not to pursue a STEM degree. Alternatively, since stu-
dents select their classes and instructors, students who do not intend to go
on in mathematics and science may seek out instructors who have reputations
for giving high grades. More information would be needed to be able to dis-
tinguish among various causal hypotheses for this phenomenon.

The MVAA models clearly provide more information for these data than a
univariate model would have. They allow use of partial information for stu-
dents who do not have a complete bivariate response, thereby reducing bias

TABLE 4
Fixed Effects Estimates and Standard Errors in the Model With Responses stem and

grade3

Covariate grade3 Estimate Standard Error stem Estimate Standard Error

Intercept (1.47 0.21 (1.17 0.23
ethnic ¼ A (0.02 0.07 0.15 0.08
ethnic ¼ B (0.60 0.13 (0.32 0.14
ethnic ¼ H (0.17 0.06 (0.11 0.07
ethnic ¼ N (0.68 0.20 (0.63 0.14
citizen (0.28 0.09 (0.14 0.11
hsgpa 1.12 0.05 0.39 0.06
res 0.11 0.04 0.04 0.05

Note: The Default Category for Ethnicity is Ethnic ¼ W.
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in the estimates and giving more precision for parameter estimates. The
significance of g12 in both models indicates that the unstructured G is an impor-
tant extension. This covariance component should be considered for relevance in
all VAA models. The multivariate model also provides more insight into the
nature of teacher contributions to student outcomes. In the model where both
responses are course grades, the teacher effects for the two responses are strongly
positively correlated, as would be expected. But for the model with responses
grade3 and stem, the correlation of the teacher effects for the two responses is
small, but negative. In this case, grade3 and stem appear to be associated
with two very different measures of teacher contributions.

Uses and Limitations of the MVAA Models

The model in Equation 3 includes random effects for teachers. If desired,
a school level variable (third level of hierarchy) can be included similarly to
the teacher effect. Also, a random factor for class nested within teacher can
be included. Although the model makes explicit references to students, teach-
ers, and time periods, the model can very easily be generalized to any two-
or multilevel analysis with repeated measures. For example, you can model
the effect of doctors (teachers) and hospitals (schools) on patients’
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FIGURE 2. Predicted random teacher effects for responses: Grade in Calculus III and

graduation with a STEM degree.
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(students’) well-being over time. Regardless of the applied concept, the main
goal is to be able to use the MVAA models to estimate the parameters of
interest, that is, estimates of individual teacher and school effects and the
overall contributions of the teachers to the variability of the student
achievement.

When we have discussed this research with colleagues, the first question
many people ask is which teachers are the best or worst, and who are the indi-
vidual teachers appearing in Figures 1 and 2. Many researchers and policy-
makers argue that VAA models provide more information for teacher
evaluation than some other approaches, and therefore should be an important
component of official teacher evaluations. Gordon, Kane, and Staiger (2006)
are among those who suggest using estimates from VAA models for decisions
about hiring or firing teachers.

We believe that our results illustrate potential concerns about using esti-
mates of individual teacher effects for ranking purposes. First, although the
models can be used with data from randomized experiments, in most cases,
they will be used with observational data. Unmeasured variables may have a
large effect on the outcomes. We did not have information, for example, on
the number of hours worked per week by the students; it is possible that stu-
dents who work many hours would be concentrated in certain time slots. Since
students choose which teacher they take, and since it is impossible to measure
every factor in a student’s background that contributes to success, one cannot
say that the estimate for a specific teacher is due to that teacher rather than to
the characteristics of students who select that teacher.

Second, the results illustrate that potential rankings depend strongly on the
particular outcome studied. Corcoran (2009) argued that if VAA model esti-
mates are to be used for teacher assessment, at the very least they should be
precise and consistent across outcomes measured. He also argued that they
should admit a causal interpretation, which, given the observational nature of
most data sets, does not occur. In our application, neither of Corcoran’s condi-
tions is met. Figure 2 indicates a negative correlation between estimated teacher
effects for one of the responses used in the evaluation of instructors at the uni-
versity, namely, course grades, and a long-term outcome that is one of the stated
goals of the university administration, namely, increasing the number of gradu-
ates in STEM fields. Thus, a ranking based on one of the responses will ignore
contributions to the other response.

The MVAA models in this paper show the relationships among teacher
contributions toward different student outcomes and allow consideration of
binary real-world outcomes such as graduation or having a career in a STEM
field. While they cannot capture the full complexity of student achievement,
they can provide a much better picture than relying solely on univariate test
scores.
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Appendix A: Proof of Theorem 1

We show that the conditions in Theorem 2 of Mardia and Marshall (1984)
hold, namely, that (a) the eigenvalues of V and Vi are bounded and (b)

jjVijj(2
F ¼ Oðn(1=2(#Þ, for some # > 0 for i ¼ 1; . . . ; q, where F denotes the

Frobenius norm. Since V ¼ SGS0 þ R, we have

qV

qgik
¼ S blockdiagð#ikÞS0 and

qV

qrik
¼ blockdiagð#ikÞ;

where #ik is the t ' t matrix with 1 in the ði; kÞ and ðk; iÞ elements and 0 else-
where. The second-order partial derivatives of V are all equal to zero so that the
eigenvalues of the second-order partial derivative matrices are bounded.

We rely on properties of matrix norms to bound the eigenvalues of V and Vi.
For an n' n symmetric matrix A, jjAjj2 is the maximum eigenvalue of A, and
jjAjj1 ¼ maxj

P
ijAijj. Let gmax denote the maximum diagonal element of G.

Since all elements of S are less than or equal to one,

jjSGS0jj2 , jjSGS0jj1 , Kt2gmax:

Similarly,

jjS blockdiag ð#ikÞS0jj2 , Kt2:

We now show condition (b). Let y‘ ¼ gik : All elements of S and #ik are greater
than or equal to 0. Also, the ðj; jÞ element of S0S is the number of students taking a
particular class, which is assumed to be at least 1. Thus,

jjV‘jj2F ¼ jjS blockdiag ð#ikÞS0jj2F
¼ trfS blockdiagð#ikÞS0S blockdiag ð#ikÞS0g
- tr fI blockdiag ð#ikÞI blockdiag ð#ikÞg
- m:

Since the number of students in each class is bounded by K;m - n=ðKtÞ; so
condition (b) is satisfied with # ¼ 1=2:
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Appendix B: SAS Code for Calculating Estimates

/* Create matrices A1, A2, A3 for 24 teachers with 2 responses */
data Amat (keep ¼ row col parm value);

t ¼ 2; /* t ¼ number of responses */

m ¼ 24; /* m ¼ number of teachers */

retain value 1;

retain parm 0;

do parm1 ¼ 1 to t;

do parm2 ¼ parm1 to t;

parm ¼ parmþ1;

do i ¼ 1 to m;

row ¼ (i-1)*t þ parm1;

col ¼ (i-1)*t þ parm2;

output;

end;

end;

end;

/* Model with responses grade2 and grade3, both in variable grade.

Use option method¼ML to carry out likelihood ratio tests. */

proc mixed data¼both_short2 covtest;

class instructor_ID time ethnic;

model grade¼time res ethnic hsgpa citizen

res*time time*ethnic hsgpa*time citizen*time/solution;

random instructor_ID*time/ solution type¼lin(3) ldata¼Amat;

repeated time/ subject¼student_ID type¼un;

/* Model with responses Calculus III grade and graduate with STEM
degree*/

/* dist¼ ‘binary’ for response stem and ‘normal’ for response grade3.

links ¼ ‘probit’ for response stem and ‘identity’ for response
grade3.

The options dist¼byobs(dist) and link¼byobs(links) allow SAS to
fit the

separate distributions and link functions for the two response
variables.*/

proc glimmix data¼jointmodel;

NLoptions maxiter¼20;

class instructor_ID student_ID dist time ethnic links;

model response(event¼’1’) ¼ time res ethnic hsgpa citizen

res*time time*ethnic hsgpa*time citizen*time/

solution dist¼byobs(dist) link¼byobs(links);

parms (1) (0) (1) (1) (0) (1) / hold ¼ 6;

random instructor_ID*dist/type¼lin(3) ldata¼Amat2 solution;

random _residual_ / subject¼student_ID type¼un;
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