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The use of complex value-added models that attempt to isolate the contributions
of teachers or schools to student development is increasing. Several variations on
these models are being applied in the research literature, and policy makers have
expressed interest in using these models for evaluating teachers and schools. In
this article, we present a general multivariate, longitudinal mixed-model that
incorporates the complex grouping structures inherent to longitudinal student
data linked to teachers. We summarize the principal existing modeling approaches,
show how these approaches are special cases of the proposed model, and discuss
possible extensions to model more complex data structures. We present simula-
tion and analytical results that clarify the interplay between estimated teacher
effects and repeated outcomes on students over time. We also explore the poten-
tial impact of model misspecifications, including missing student covariates and
assumptions about the accumulation of teacher effects over time, on key infer-
ences made from the models. We conclude that mixed models that account for stu-
dent correlation over time are reasonably robust to such misspecifications when
all the schools in the sample serve similar student populations. However, student
characteristics are likely to confound estimated teacher effects when schools
serve distinctly different populations.

Keywords: accountability, model misspecification, omitted-variables

A currently active and central education policy initiative involves the use of
scores on standardized achievement tests to hold educators accountable for student
outcomes. This practice is a key component of most existing state accountability
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systems and is a cornerstone of the recently adopted federal education legislation,
the No Child Left Behind Act of 2001. Most state testing programs include tests
administered in a variety of subjects and across multiple grades. One of the chal-
lenges for those responsible for designing and implementing these systems is the
need to combine test-score information into a single measure that provides evi-
dence of school or teacher effectiveness. Although many states and districts rely
on fairly simple score averages or differences, a few are exploring the use of more
complex models that use longitudinal data on students to determine the “value
added” by a particular teacher or school (Meyer, 1997). This modeling approach
has taken a number of forms and is generally referred to as “value-added model-
ing” (VAM).

Enthusiasm for this approach stems in large part from the belief that it can
remove the effects of factors not under the control of the school, such as prior
performance and socioeconomic status, and thereby provides a more accurate
indicator of school or teacher effectiveness than is possible when these factors
are not controlled. Applications of VAM in a few jurisdictions, including Tennessee
(Sanders, Saxton, & Horn, 1997) and Dallas (Webster & Mendro, 1997), have
attracted the interest of large numbers of researchers and analysts; and enthusi-
asm for applying these methods has grown rapidly among policymakers in
recent years. Of particular interest in these applications are the evaluation indi-
vidual teachers and the results suggesting that teachers have large and differen-
tial effects on student learning. This article focuses on VAM estimation of
teacher effects.

Despite this enthusiasm, VAM approaches have not yet been widely adopted in
formal state or district accountability systems in part because VAM requires exten-
sive computing resources and high-quality longitudinal data that many states
and districts currently do not have. As data systems and computing resources
improve, and as access to the necessary software for performing these analy-
ses increases, we expect VAM to play a more substantial role in formal account-
ability systems.

The longitudinal student outcomes data used in VAM present many challenges
for statistical modeling of teacher effects and the variability among teachers. Two
are of primary interest: multiple measures on the same student and multiple teach-
ers instructing each student. Models must account for and use the likely positive
correlation among multiple measures on the same student. Class groupings of stu-
dents change annually, and students are taught by a different teacher each year. The
existence of teacher effects and shared but unobserved environmental variables for
students within classes will contribute to positive intra-class correlation among
outcomes for students in the same class. However, changing classes and teachers
across years means that student outcomes do not follow the traditional nested
designs of hierarchical models (Raudenbush & Bryk, 2002; Goldstein, 1995), and
alternative model formulations are necessary.

There exist several models for estimating teacher effects that capture these com-
plexities of student outcomes. To date there have been limited comparisons of

68

McCaffrey, Lockwood, Koretz, Lewis, and Hamilton

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


these methods. Rowan, Correnti and Miller (2002) conducted an empirical com-
parison of estimated teacher effects from three alternative models for longitudinal
student test score data: covariate adjustment with current scores regressed on prior
scores and student home and background variables; one year gains (i.e., current year
score less prior year score) with adjustment for background variables; and a com-
plex cross-classified random effects model (Raudenbush & Bryk, 2002). Details on
these models are provided in the Alternative Value-Added Models Section.

The authors report that across multiple subjects and cohorts, teachers’ contri-
bution to total variability in scores (gains) ranged from 4 to 16 percent for covari-
ate adjustment models, from 3 to 10 percent for gain score models, and from 10 to
20 percent for cross-classified models. Rowan et al. argue in favor of the cross-
classified model because, unlike the other models, it decomposes within-classroom
variability in growth into its systematic and residual components. While Rowan
and colleagues provide an important first exploration of the robustness of teacher
effects to the alternative model specifications, their study is limited in that it does
not provide detailed comparison of model assumptions or likely results of viola-
tion of those assumptions. In particular, they do not investigate whether VAM
really does remove the effects of factors such as prior performance and socio-
economic status, and thereby provide a more accurate indicator of teacher effec-
tiveness than is possible when these factors are not controlled. We extend their
results in several important ways.

Our primary purpose in this article is to develop and evaluate a multivariate,
longitudinal mixed-model that respects the crossed grouping structures inherent
to longitudinal student data linked to teachers. We also describe alternative mod-
els used for VAM of teacher effects and demonstrate that these models are spe-
cial cases of the general model. We use this unifying framework to contrast the
alternative approaches. We also study in detail model misspecification and its
likely effects on estimated teacher effects in terms of likely systematic errors in
the estimates. We use an empirical example to explore the efficiency of estimated
teacher effects and consider efficiency of estimates more broadly in the Discus-
sion Section.

A General Model for Longitudinal Student Outcomes

We start with a general model for student outcomes. Although many types of
outcomes might be considered (e.g., grade completion or retention, attendance, dis-
ciplinary actions), most value-added modeling to date has focused exclusively on
scores from standardized assessments. Therefore we will use the terms outcomes
and test scores interchangeably.

We first present models for students from a single school system, such as a
school district, state, or intermediate aggregation of districts. We also focus on
scores for a single subject such as math or reading and a single cohort of students.
Extensions to the models to allow for multiple school systems, subjects, or cohorts
are presented after the initial model. We limit presentation to four, contiguous
grades of test scores, although all results generalize to more grades.
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The score data are yig for the student i’s score in grade g. For notational conve-
nience, we let g = 0 for the first grade of data collection, g = 1 for the second and
so on. The model for grade 0 scores is:

where the η0k denote grade 0 school effects (i.e., deviations in school-level means
from the overall system mean) for the M schools in the system and might be consid-
ered either fixed or i.i.d. random normal with mean zero and variance, σ2

η0, i.e., η0k ∼
N(0, σ2

η0). The λi0k measure the proportion of grade 0 schooling that school k pro-
vided to student i. If student i did not attend school k, then λi0k = 0. If the student
attended only school k then λi0k= 1; otherwise it is between 0 and 1. For students who
spend only part of the year in the system, the sum of the λλi0k will be less than 1. For
students who complete the entire year in this system the sum of λi0k will equal 1. Like-
wise, the θ0j are i.i.d. N(0, σ2

θ0) teacher effects for the N0 grade 0 teachers and the φi0j

measure the proportion of grade 0 education provided to student i by teacher j. The
values of λi0k’s and φi0j’s are observed from administrative data and not estimated.

The xi and zi0 are time invariant and time varying covariates for student i. These
include student-level variables such as such as gender, race, poverty level (time
invariant) and special testing circumstances (time varying; e.g., accommodations
given to students with disabilities). They might also include classroom level vari-
ables such as the classroom percentage of special education students. The �i0 are
i.i.d. N(0, σ2

�0) residual error terms. Given the fixed effects and variance components
of this model and assuming school effects are treated as random, E(yi0) = β′0xi + γ ′00zi0

and Var(yi0) = σ2
η0 Σλ2

i0k + σ2
θ0 Σφ2

i0j + σ2
�0. Throughout the article, unless other-

wise noted expectation and variance are conditional on the observed covariates but
not random teacher or school effects.

To simplify notation, let η0 = (η01, . . . , η0M)′, λi0 = (λi01, . . . , λi0M)′, θ0 = (θ01, . . . ,
θ0N0

)′, and φi0 = (φi01, . . . , φi0N0
)′ and write Equation 1 as

Including additional grades of outcomes breaks down the traditional nesting of stu-
dents into classes because across years students are not uniquely assigned to one
teacher or grouped together in the same classes. We capture this mixing, some-
times referred to as cross-classification (Raudenbush & Bryk, 2002; Goldstein,
1994), by explicitly modeling the effects of prior grade teachers (and schools) on
current year scores using the following model:

y x zi i i i i

i i i

1 1 1 11 1 10 0 0 1 1

10 0 0 1 1 1 3

= + ′ + ′ + ′ + ′( ) +

′ + ′( ) +

µ β γ ω η η

α φ θ φ θ

� �

� , ( )

y x zi i i i i i i0 0 0 00 0 0 0 0 0 0 2= + ′ + ′ + ′ + ′ +µ β γ η φ θ� � . ( )

y x zi i i i k k
k

M

i j j i
j

N

0 0 0 00 0 0 0
1

0 0
10

0

1= + ′ + ′ + + +
= =

∑ ∑µ β γ λ η φ θ � , ( )
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In these models the dimensions of zig can be increasing with g if, for example,
the prior values of the time-varying covariates are carried forward with (possibly)
different coefficients at each grade (i.e., the model includes interactions between
grade and the time varying covariates).

For g > 0 similar distributional assumptions are made for all the random terms as
they were in Equation 2. The parameters α10, α20, α21, etc. determine how prior year
teachers contribute to current year scores. If they all equal zero, then prior year teach-
ers have no contribution to current year scores. If they all equal 1, then teacher effects
persist undiminished in perpetuity, contributing equally to the current year as they did
in the past. Furthermore, when all α ≡ 1, teachers from prior years make no contribu-
tions to gains in scores. If they are less then one and decay exponentially with the gap
between test administrations, e.g., αgg′ = αg–g′ for α < 1, then over time the contribu-
tions of a teacher effect to students’ scores follows a stationary autoregressive struc-
ture. When all α < 1, prior year teachers contribute inversely to gains because students
“regress” to the mean after leaving the teacher’s class. Thus, a positive teacher effect
contributes negatively to gains and a negative teacher effect contributes positively to
gains. When all α > 1, positive teacher effects have positive effects on gains and visa-
versa for negative effects. The ω’s function similarly for school effects.

Because each student has many unique characteristics, and abilities cannot be
completely measured and incorporated into any model, scores from the same stu-
dent are likely to be correlated, even after accounting for measured attributes
through covariate adjustment. Therefore, we employ an unrestricted covariance
matrix for the residual error terms, i.e., Corr(�ig, �ig′) = ρgg′ and variance free to
change across years. Also, we employ a model where teacher and school effects
are assumed to be independent across years. Alternative assumptions regarding
teachers and schools are discussed below.

Together these assumptions yield that:

and

where ωgg = αgg = 1.

Var yig gt ig ig ng
t

g

gt ig ig g
t

g

g( ) = ′ + ′ +
= =
∑ ∑ω σ α φ φ σ σθ

2 2

0

2 2

0

2 7� � � , ( )

E yig g g i ig ig( ) = + ′ + ′µ β γx z , ( )6

y x zi i i i i i k k i

i i i i i

3 3 3 33 3 30 0 0 31 1 1 32 2 2 3 3

30 0 0 31 1 1 32 2 2 3 3 3 5

= + ′ + ′ + ′ + ′ + ′ + ′( ) +

′ + ′ + ′ + ′( ) +

µ β γ ω η ω η ω η η

α φ θ α φ θ α φ θ φ θ
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� . ( )

y x zi i i i i i

i i i i

2 2 2 22 2 20 0 0 21 1 1 2 2
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Extensions to and Comments on the General Model

Although our model explicitly accounts for many important features of longi-
tudinal score data, several details of and extensions to it merit consideration.

Teacher Effects

The statistical model presented above characterizes teacher effects as random vari-
ables that contribute to test scores. However, the teacher effects of interest are causal
contributions of teachers to student achievement. The relationship between the sta-
tistical model and the causal effect depends on numerous assumptions. Implicit in
our model is that the teacher has a constant effect on all students relative to other
teachers in the system. Given that teacher effects might not be constant, the effect is
an approximation to the teacher’s average effect on students in the population that
are likely to be in his or her class–assuming the model is otherwise correctly speci-
fied. In the first year of testing the model is unlikely to be correctly specified because
it does not fully account for the student’s history prior to this grade of testing. In this
case, the estimated teacher effect will tend to include historical factors such as stu-
dent background and previous educational experience that cluster by classroom.
Thus, estimated teacher effects when g = 0 should be interpreted cautiously. Similar
issues hold for school effects.

We consider two measures of teacher effects: estimates of individual teacher
effects and the overall contributions of teachers to variability in student outcomes.
The best linear unbiased predictor, BLUP, provides the estimate of each individ-
ual teacher’s effect for mixed models such as the general models and most of the
models discussed below (Searle, Casella, & McCulloch, 1992). The variance com-
ponents for teacher effects (σ2

θgs) and their ratios to the overall variability in out-
comes describe the teachers’ contribution to total variance.

Multiple School Systems

Implicit in the current model is the assumption that within the school system,
teacher, student and possibly school effects are exchangeable, so that they can
be modeled as random variables from a single teacher, student or school distri-
bution. When pooling data from multiple systems the teachers, students and
schools must remain exchangeable. If they are not, the model must be adapted
so that conditional on the fixed effects and variance components of the model,
the random effects can be considered exchangeable. Therefore, if we want to
include multiple systems, then all fixed effects in the model should be consid-
ered system specific.

Multiple Subjects Per Grade

Often students are tested on multiple subjects such as math, reading, science,
etc., at each grade. Several additional terms are necessary to extend the general
model to the joint distribution of multiple subject scores per grade. The model must
include separate teacher and school effects for each subject and each grade and
describe how these affect all outcomes and persist over time. The model must also
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specify the correlation between teacher effects, school effects and residual error
terms for different subjects within and across grades.

Multiple Cohorts

Data from multiple cohorts provide repeated measures of some teacher and
school effects. Therefore, we might consider jointly modeling the data from multi-
ple cohorts with correlation in teacher and school effects across cohorts as a means
of improving the statistical properties of estimated teacher and school effects. Ide-
ally, model parameters and teacher and school effects would change across cohorts
so that school and teacher improvements could be modeled and tested. However,
given the reality of data availability and computational capacity, model parameters
might be held constant across cohorts to improve the precision of estimates, at the
possible cost of adding bias.

Multiple subjects and multiple cohorts can greatly increase the computational
burden of fitting the models. Estimation requires inverting a sparse square matrix
with rows for every student’s scores by year and subject. The matrix grows with
the square of additional subjects and cohorts. In addition, selecting the cohorts to
include can be difficult. Ballou, Sanders and Wright (2003) provide a detailed dis-
cussion of this choice in one application.

Random Slopes

For simplicity of presentation, we include only fixed parameters for the covariates.
The model could include school level (random or fixed) parameters and possibly
teacher level random slopes for the covariates. Inclusion of teacher random slopes
would provide a means of modeling teacher effects that vary across students–the
teacher’s effect for a student with covariates xi and teacher j is θj + β′jxi. However,
including random slopes requires that we model the effects of these on future scores
resulting in extremely complex models with demanding data requirements for obtain-
ing precise estimates. These data demands might be unattainable in many application
and simpler models might be required. In addition, including random slopes in the
model obscures salient features of the model, so we do not present these models.

Measurement Error

The general model implicitly includes measurement errors in test scores as a
component of the residual error terms. However, the variability in measurement
error typically is not constant across the range of “true scores,” where the true score
is a student’s level of achievement for the skills measured by the test. Therefore,
the model should be extended to allow for heteroscedastic residual errors where
the variance depends on the true score which in turn depends on teacher and school
effects as well as student covariates and fixed effects. The variability of measure-
ment error might be available from test publisher or explored empirically. How-
ever, because no VAM models currently considered in the literature explicitly
model this nonconstant variance, we will not explicitly include heteroscedastic
measurement error in our presentation.

73

Models for Value-Added Modeling of Teacher Effects

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


Unequal Inter-Testing Intervals

We assume that for all students the intervals between tests is nearly constant
and treat time of test as year or grade. In some settings testing intervals may vary
across students, for example, when different school systems are combined for
analysis. This situation makes use of the unrestricted covariance problematic
and a parametric specification of the covariance matrix might be used. For
example, constant correlation among scores (compound symmetry) or correla-
tion that decays exponentially with the gap between test administrations (sta-
tionary autoregressive) or possibly a combination of these two structures might
be considered.

Different Scales Across Grades

The tests used in some school systems are not designed to produce a single
developmental scale across grades. For example, a school district might use tests
that are not vertically linked and provide only grade specific normal curve equiv-
alents. The general model, as specified earlier, employs an unspecified covari-
ance matrix for residual errors that can accommodate the nonconstant variances
and covariances that likely result from different developmental scales across
grades. In addition, the estimation of αs and ωs allows for teacher and school
effects to have different scales in the models for current and future scores as
required by the different developmental scales. Thus, the model of Equations 1
to 5 is sufficiently flexible to model longitudinal data even when the develop-
mental scales are not constant across grades provided the scales are linearly
related.

Alternative Value-Added Models

Our model was motivated by considerations of the nature of longitudinal test
score data. We describe alternative models that are currently used to model such
data. We consider generic models such as covariate adjustment models, models for
gain scores and cross-classified models. We also review two particular models used
for VAM: the cross-classified model of Rowan, Correnti and Miller (2002) and the
layered model of the Tennessee Value-Added Assessment System. We include
both generic and specific models so that we can later draw the appropriate rela-
tionships among models and improve interpretation of results from different mod-
els. We start with the covariate adjustment and gain score models because they can
be fit using standard hierarchical models software and are most widely used for
modeling scores. The other models require specialized software and have achieved
less widespread use.

Covariate Adjustment Models

One common approach to modeling longitudinal data is to use prior scores as
covariates in models for current outcomes (Rowan, Correnti, & Miller, 2002; Diggle,
Liang, & Zeger, 1996; Meyer, 1997). This is also a model commonly used in much
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of the economics production function literature (Hanushek, 1992). For example,
Rowan et al. consider the following model:

with the assumptions that for each grade the school and teacher effects and the
residual error terms are respectively i.i.d. normal random variable with mean zero,
variance σA2

ηg, σA2
θg and σA2

�g, and independent of each other. Note that we use super-
scripts to distinguish the parameters from different models. Teacher and school
effects also include superscripts because the different model specifications implic-
itly change the interpretation of these effects. Such models are often used with only
two years of data and provide only one year of teacher effect estimates. However,
with multiple years of testing the models typically assume that all cross-year cor-
relation is explained by the inclusion of the prior year scores as a covariate so that
Corr(�A

ig, �
A
ig′) = 0 for g ≠ g′ and prior year teacher effects do not explicitly enter the

model. The complexity of cross-classification is assumed to be completely mod-
eled by the inclusion of the covariate and the models can be specified as a tradi-
tional hierarchical model (Raudenbush & Bryk, 2002; Goldstein, 1995). Rowan
et al. follow this approach, but they treat the variance components as constant and
pool the data across years for estimation.

If the model is extended to allow for correlation among the residual errors across
years, then standard mixed model estimation would yield biased estimates of fixed
effects because of the correlation between the covariate and the residual error term.
Alternative approaches that are similar to fitting the general model would be
required for accurate estimation. Thus, to keep this model distinct from other alter-
natives, we consider only the case where residual error terms are assumed to be
independent across years.

Repeated Cross-Section Models of Gains

When all scores are on the same scale, scores from adjacent grades can be dif-
ferenced to obtain “gains” that are then modeled (Rowan et al., 2002; Shkolnik,
Hikawa, Suttorp, Lockwood, Stecher, & Bohrnstedt, 2002). We let di0 = yi0 and dig =
yig − yig − 1 for g ≥ 1. The model for grade g ≥ 1 gains is

The coefficient δG
g denotes the mean gain in grade g. Random teacher and school

effects and student residual error terms follow the same assumptions as the pre-
vious model. In particular, as with the previous model the correlation across
grades in εG

ig’s typically is ignored and will be for our discussion. Thus, differ-
encing scores is assumed sufficient to capture all the important cross-grade cor-
relation structure and the complexity of cross-classification is removed by this
assumption.

dig g
G

g
G

i ig
G

ig ig
G

ig g
G

ig
G

g
= + ′ + ′ + ′ + ′ +δ β γ η φ θx z � � . ( )9

y yig g
A

g
A

i
A

ig ig
A

ig ig g
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Some analysts (Rowan et al., 2002) include yig − 1 on the right hand side of
Model 9. However, doing so makes Model 9 equivalent to Model 8 with γ*
replaced by γ* − 1 (Wertz & Linn, 1970). Thus models for gain scores should not
include the prior score as a covariate.

Cross-Classified Models

In their hierarchical models book, Raudenbush and Bryk (2002) (RB) develop
a cross-classified model that explicitly models the cross-grade correlations and the
effects of the multiple years of teachers on student outcomes. RB consider random
linear growth trajectories for students. The cross-classified (CC) model for scores
yig for student i in grades 0 to 3 is:

The �Cs are assumed to be i.i.d. normally distributed random variables with mean zero
and variance σC2

� . The θ are again teacher or classroom effects and are assumed to be
independently, normally distributed with constant variance across years. Each stu-
dent’s growth over grades is modeled with a linear trend µC + γ Cg + µi + γig and the
random intercepts and slopes are assumed normally distributed with mean zero and
variance τ2

00, τ2
11 and covariance τ01. Equation 10 assumes testing is at the same regu-

lar intervals for all students, which is likely to be a reasonable approximation for many
testing programs. However, if the timing of tests is available in the data and it varies
appreciably across students, grade can be replaced by time since baseline testing.
When time between tests is not constant, the variances and covariances for the resid-
ual error terms will vary among student as a function of variation in time between tests.

Rowan, Correnti and Miller (2002) (RCM) use a variant of the cross-classified
(CC) model to specifically estimate variability of teacher effects, to which they also
refer as classroom level variability. The model includes time-varying covariates
for participation in educational programs (e.g., special education or gifted and
talented) and age. Their model also includes time-invariant covariates for student
ethnicity, family structure and socioeconomic status (SES). The time-constant
characteristics are not interacted with grade and so do not contribute to the model
for gains.1 This model includes linear and quadratic terms for months since the first
test with random slopes for students on the linear term. RCM also include random
school effects in their model.

Tennessee Value Added Assessment System, Layered Model

The Tennessee Value-Added Assessment System (TVAAS) produces estimated
teacher effects using a model that William Sanders and colleagues, (Sanders et al.,
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1997), call the layered model because the model for later years adds layers to the
model for earlier years. For a single subject and cohort of students from one school
system, the layered model is:

The �T
igs are assumed normally distributed and independent across students. Within

a student the variance-covariance matrix of the �s is unrestricted allowing for dif-
ferent variance at each time point and possibly nonzero and nonconstant correla-
tion of scores from different years (grades). The variance-covariance parameters
are assumed constant across all students.

As with the other models we consider, the teacher effects are assumed to be
independent normally distributed with zero mean. Effects are assumed to be inde-
pendent both within and across years. TVAAS allows the variance of teacher
effects to vary across grades.

Equation 11 simplifies the TVAAS model in several ways. First, TVAAS often
models data from multiple school systems. When doing so, Model 11 is extended
to allow only the means to be system dependent with all other coefficients held con-
stant across systems. TVAAS uses data from grades 2 through 8 and considers
multiple subject tests per grade. The TVAAS model allows correlation between
scores from the same student across subjects (and grades). However, TVAAS
assumes that teachers have separate and independent effects for each subject, even
if they teach multiple subjects. Thus, models for multiple subjects would be simi-
lar to models with multiple years and a single subject and our discussions do not
lose generality by considering only a single subject.

A Comparison of Alternatives and the General Model

The model given in Equations 1 to 5 is sufficiently general to include all the
alternative models as special cases. Figure 1, which summarizes the relationships
between all the models, shows the generality of our new model by including it at
the center with all models pointing to it. This section provides details on the rela-
tionship of each alternative to the general model and on the relationships among
models. In particular, as shown in Figure 1, we demonstrate that the gain score
model and CC model, when time is constant across students, are special cases of
the layered model. For comparisons, we consider five features of the models:
parameterization of the overall time trend; inclusion of covariates; the distribution
of residual error terms; the persistence of teacher effects on future outcomes; trans-
lations between modeling scores and gains.
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Covariate Adjustment and the General Model

We expand the covariate adjustment Model 8 to obtain the alternative expres-
sion for yig under model:

which is the general model with the following restrictions:
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FIGURE 1. Relationship among models. Without covariates, gain scores and the cross-
classified model are special cases of the layered model with restrictions to the overall time
trend and/or the distribution of residual errors. The layered model is a special case of the
general model with restrictions to the αs and without covariates. The covariate adjustment
and gain-score model with covariates are special cases of the general model with restric-
tions to the distribution of residual errors and the αs.
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Thus, the covariate adjustment model restricts the residual error terms to be auto-
regressive. It also restricts teacher and school effect to have the same autoregressive
structure.2

Because of measurement error in observed test scores, analysts typically consider
the correct specification for the right-hand side of Model 12 to include the “true
score” for the prior achievement rather than the error prone observed prior year test
score. That is yig = µA

g + βA
g′xi + γA*uig−1 + γ A

ig′zig + λ′igηA
g + φ′igθA

g + �A
ig, where uig is the

true score, ξA
ig is measurement error and yig = uig + ξA

ig. The correspondence between
the general model and the covariate adjustment model also holds when the covariate
adjustment model is specified in terms of a regression on the true score rather than 

the measure with error. However, in this case, ,

where ζA
ig is the residual error term in the true score and �A

ig = ζA
ig + ξA

ig.

Gain Scores and the General Model

The gain score Model 9 uses first differences of the test scores. Under the gen-
eral model, first differences for g > 0 can be written as:

The gain score Model 9 equals the general model with the following restrictions

• all of the αs and ωs equal 1;
• �s restricted to �ig = �ig−1 + �G

ig;
• δG

g = µg − µg−1;

• βG
g = βg− βg−1; and

• γ G
g = γg − γg−1.

Thus the gain score model implicitly assumes that teacher (school) effects persist
undiminished into the future and that residual errors follow an autoregressive unit
root process with no unobserved student heterogeneity in gain scores, i.e., zero cor-
relation across time in the residual error terms for a student’s gains.

Covariate Adjustment and Gain Score Models

In general there is considerable debate over whether to model gains or fit covari-
ate adjustment models. Many authors argue against the covariate adjustment model
(Rowan et al., 2002; Thum, 2002). They argue that the covariate adjustment model
is not a model of growth and that because of measurement error, estimates from
Model 8 are inconsistent. However, other authors note that gains are more variable
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and less “reliable” than scores and that gains can produce biased estimates of the
parameters of structural or causal models. For modeling longitudinal data and esti-
mating teacher effects, both models make restrictive assumptions about error terms
and persistence of teacher effects. Our general model captures the features of both the
gains and covariate adjustment models and can test the assumptions of each model
yielding an empirical determination of the best model. We have not studied the rela-
tive efficiency of the two models in the context of teacher effect estimation. However,
for estimating group means the covariate model produces more efficient estimates,
when the model is correct (Feldt, 1958). Yang and Tsiatis (2001) consider relative
efficiency in a semiparametric model assuming only the first two moments of the joint
distribution. They find that change score modeling tends to be more efficient than
covariate adjustment for estimating group means in an experimental setting.

CC, TVAAS and the General Model

Compared to the general model of Equations 1 to 5, the CC model with constant
testing times places restrictions on both fixed effects and the distribution of the
residual error terms. The CC model uses a linear trend in time rather than allow-
ing separate means for each time point, µg = µC + γCg. In addition, the CC model
forces the βs and γs to be identically zero and, like the gain score model, assumes
that all the αs and ωs equal 1.

CC also restricts the variances and covariances of multiple observations from a
student. CC assumes that �ig = µi + γig + �C

ig so that VarCC(�ig) = τ 2
00 + 2gτ01 + g2τ2

11

and CovCC(�ig, �ig′) = τ 2
00 + (g + g′)τ01 + gg′τ2

11 and the variability of scores neces-
sarily increases over time for sufficiently large values of g. In the general model,
error term variances and covariances are unrestricted.

The layered model is also a special case of the general model that excludes
school effects and covariates and where the α’s are assumed to equal one. How-
ever, unlike the CC model, the TVAAS layered model places no restrictions on the
overall grade specific means (the µT

gs) and places no restrictions on the covariance
matrix of the repeated test scores from a student. Thus, CC is a special case of both
the general model and the TVAAS model with restrictions to the growth over time
in the overall means and restrictions to the distribution of residual error terms.

CC, TVAAS and Gain Scores

When all of the αs equal 1, as in both the TVAAS layered model and the CC
cross-classified model, first differences depend only on the current year teachers.
Taking first differences of adjacent year scores, yields that for the CC model

where δ0 = µ, ζi0 = µi + �C
i0 and δg ≡ γC and ζig = γi + �C

ig − �C
ig−1 for g = 1, 2, 3. Assum-

ing all student complete all the tests so that raw scores can be transformed to gain
scores, the CC model is a multi-grade gain score model, where the mean gain is

dig g
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ig g
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C= + ′ +δ φ θ ζ , ( )14
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assumed constant across grades and variance-covariance matrix for residual error
terms from the same student is not diagonal (i.e., gains are not independent across
grades) but given by:

Similarly the layered model for differences is:

where δ0 = µT
0, ζi0 = �T

i0 and δg = µT
g − µT

g−1, ζig = �T
ig − �T

ig−1 for g = 1, 2, 3 and the
residual variance-covariance matrix remains unrestricted.

When all students have complete data, the dgs uniquely map to the ygs and dgs
are sufficient for the ygs and teacher effects and variance components can be esti-
mated fully efficiently from modeling either the gains or the raw scores. Thus, both
the CC and the layered models essentially determine teacher effects by gains for 
g > 0, although the inclusion of multiple years of gains and the intra-student corre-
lation result in adjusted gains that account for student performance across all years.

The CC and layered models use data from all students, even those with partially
complete records. Gain score modeling uses only students with both years of data
unless imputation or another missing data method is applied. Again the CC and
layered models are extensions of gain score modeling. Loss of incomplete records
can not only decrease precision, but also introduces bias when the distribution of
missing test scores are not missing completely at random (Little & Rubin, 1987).
CC and layered models are robust to missing data provided data are missing at ran-
dom (Little & Rubin, 1987).

When the data are incomplete the simple translation from raw to gain scores is
not possible. However, because in both the CC and layered models gains link to
only one teacher the estimation procedure essentially involves two steps: implicit
imputation of values for unobserved gains using the observed scores; followed by
estimation of teacher effect using the means of both the imputed and observe gains.

In the general model we introduced, gain scores depend on multiple teachers.
Thus, estimated teacher effects will depend on more than adjusted gains as they do
in part for incomplete data with the CC and layered models. For correctly speci-
fied models this distinction might be of little consequence. However, with omitted
covariates, the layered and cross-classified models will tend to be most sensitive to
omitted covariates that effect gains, while for the general model covariates that effect
levels might also confound estimated effects.
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Implications of Model Restrictions

The general model demonstrates that adequately capturing the complexities of lon-
gitudinal student test score data requires an extremely complex model. As described
above, models previously proposed or used for VAM have tended to place restric-
tions on the α, β and γ parameters as well as on the distribution of the residual error
terms. In this section we consider the possible ramifications of those restrictions.

Restrictions to the Residual Error Distribution

If the model has correctly specified the overall time trend and includes all rele-
vant covariates, then restrictions on the residual error structure even if incorrect
should not bias estimated coefficients (Diggle et al., 1996). However, misspecified
residual error distributions can result in inefficient estimates and possibly increase
the systematic errors in estimated teacher effects. For example, in a small empiri-
cal study we found that ignoring the correlation in gain scores across years resulted
in a substantial loss of efficiency in the BLUP estimates of teacher effects. More
generally, although parametric specification of the covariance matrix might
improve the efficiency of estimates by reducing the number of estimated coeffi-
cients, these models might increase the overall error in the BLUPS, if the para-
metric model is poorly specified. Most importantly, if the parametric model is
poorly specified the resulting errors in estimated teacher effects could be system-
atically related student characteristics.

The cross-sectional gains and covariate adjustment models assume no correla-
tion in the residual error terms across years and are traditional hierarchical models
with students nested within one teacher/class. In such traditional hierarchical mod-
els the estimate of the teacher variance component depends on the difference in the
within and between teacher (or class) mean sums of squared errors in the residual
score or gain after adjusting for the included covariates (Searle et al., 1992; Snijders
& Bosker, 1994). The estimate of the variance in the teacher effects depends on the
classroom level variance in the residual scores or gains. In addition, provided stu-
dents have only one teacher each year, standard software can be used to estimate the
parameters of these models and obtain estimated teacher effects.

Cross-classified and layered models for differences, dig, take on the familiar look
of a hierarchical model. At each grade students’ gain scores are nested in one class
and the model involves only one teacher effect which will depend on the gains.
When pooled across grades the intra-student correlation in scores as specified by the
R1 matrix (Equation 15), or its alternative from the layered model, results in the
ensemble of gains across grades all contributing to every estimated teacher effect
because a student’s gains in any one year are adjusted to account for his or her gains
in other years. As one might expect, using information from multiple years yields
more efficient estimates of teacher effects than the cross-sectional gains model.

Increasing Variability over Grades

When g > −2τ01/τ2
11 (e.g., whenever τ01 > 0), the CC model induces increasing

variance with grade. Furthermore both the cross-classified and the layered model
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assume that variability due to teacher increases with grade. However, the variabil-
ity of scaled scores on standardized tests do not necessarily increase with grade.
For example, the standard deviation of scores in the Prospects data used by RCM
remains at about 50 for every grade for the grade 1 cohort. [See (Rowan et al.,
2002) and (Puma, Karweit, Price, Ricciuti, Thompson, & Vaden-Kiernan, 1997)
for details on the Prospects data.] More generally there is considerable debate in
the measurement community on the appropriate behavior of variability over time
on true developmental scales (Burket, 1984; Hoover, 1984a, 1984b; Yen, 1986).
Thus, the fit of the CC or layered models to some data sets will be poor. We can-
not predict the consequences of lack of fit on parameter estimates, but in the exam-
ple given below the layered model presents a very different picture of teacher
effects across grades than the general model, which does not require variability due
to teachers to increase with grades.

Omitted Covariates

The layered model and the CC model as presented include no covariates. Even
when models include student characteristics, the administrative test score data
available for most value-added modeling tend to include only limited information
on student characteristics. Thus, omitted covariates are a possible problem for any
VAM application.

The inclusion of intra-student correlation of scores complicates the assessment
of the effects of omitted covariates in value-added models. Some analysts have sug-
gested that the inclusion of intra-student correlation essentially removes the effects
of omitted covariates. As we will show, this is not true in general. The impact of
omitted covariates on estimated teacher effects in the presence of intra-student cor-
relation is subtle depending on both the distribution of the omitted covariates and
the assignment of students to teachers. We consider three different scenarios for the
distribution of omitted covariates and the assignment of students to teachers, and
examine the impact on teacher effects in each case.

Randomly Distributed Omitted Variables

To ground our discussion we will use the layered model as the basis for con-
sidering the effects of omitted covariates. Because other models tend to be simi-
lar, the results presented here will apply to other models as well. We assume that
the Model 11 is correct except that a covariate ui is omitted. Without loss of gen-
erality we assume that ui is a scalar rather than a vector random variable for each
student and we assume it is uncorrelated with all the other terms in the model.

In this scenario we assume that the omitted covariate is randomly distributed
and the intra-class correlation of ui is zero. Because uis are not correlated within
classes and are uncorrelated with the teacher effects or other terms in the model,
the covariate is just another component of residual error. Even if ui are constant
over time (as the subscripting implies) and the omitted covariate contributes to
intra-student correlation in scores, this should not bias results because the model
accounts for that correlation. Thus, this type of omitted covariate should have 
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little effect on the estimated teacher effects and the estimate of the teacher vari-
ance component.

Omitted Variables Cluster by Class

For the general setting wherein the data are incomplete, the algebra for deter-
mining the effects of omitted covariates produces intractable analytic forms.
Therefore we consider the case where the data are complete and we can use gain
scores to specify either the layered or cross-classified models. Models fit to data
with partially complete student records are unlikely to result in more complete
removal of confounding effects of omitted covariates. Thus, the results presented
in this section are unlikely to overstate the possibility of problems resulting from
omitted covariates. For simplicity we consider cases where students are in only one
class each year, so that φig equals a vector of Ng zeros except for the row corre-
sponding to the student’s teacher in grade g, which equals 1. We add to the model
described above the assumption that Cov(ui, ui ′ φig = φi ′g) = ρσ2

x. That is, the distri-
bution of the omitted variable is heterogeneous across classes. In the canonical
example, which we are almost always considering, the mean value of the omitted
variable varies across classes. If we ignore intra-student correlation then estimated
teacher effects include this omitted covariate. To see this, let θ̂denote the vector of
estimated teacher effects. These estimates solve the mixed model equations (Searle
et al., 1992)

where � is a matrix with rows equal to φ′ig and sorted by student and grade, D is the
variance covariance matrix for the teacher effects (a diagonal matrix by assumption)
and r is the vector of residuals that result from subtracting the estimated mean (based
on fixed effects) from the vector of test scores. The matrix � �� is diagonal and ��r
is a vector of classroom means. Therefore, each teacher effect depends only on the
mean of the class’s residuals which includes the mean of the omitted covariates.

When the model includes intra-student correlation the mixed model equations are

and the first matrix is not diagonal. Thus estimated teacher effects mix residuals
across classrooms and, at least partially, undo the confounding of the effects of
teachers and the means of the omitted covariates. The exact amount of reduction
in confounding depends on ��R−1� which, in turn, depends on the mixing of stu-
dents between teachers across years and the nature of the intra-student correlation.

We present the following heuristic argument to provide insight into how cross-
grade correlation mitigates the confounding of omitted covariates and true teacher
effects. Greater details can be found in Appendix 1. We restrict attention to each

ˆ , ( )θ = ′ +( )− − − −Φ Φ ΦR D R r1 1 1 1 18

ˆ , ( )θ = ′ +( )− −Φ Φ ΦD r1 1
17
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student’s sample of gain scores. Centering each student’s gains around his or her
average gain (i.e., including student “fixed effects” in the model) removes any sys-
tematic student level effects on gains. The CC and TVAAS models do not com-
pletely center each student’s gains around his or her mean gain. Rather, student
gains are centered around the empirical Bayes estimate of the student’s mean. The
empirical Bayes estimate will “shrink” the student’s mean back toward the aver-
age for all students and it will adjust for the empirical Bayes estimates of the
teacher effects. The estimation procedure can be thought of as iteratively estimat-
ing teacher effects based on adjusted gains and then readjusting student gains based
on the updated teacher effects. As a result of this process, empirical Bayes esti-
mates of student means are adjusted back toward classroom means after adjusting
for the individual students means. This implies that more of the between classroom
variance in gains will remain in the final estimate of the variability of the teacher
effects than if the students’ raw mean had been used to adjust his or her gains.
Adjusting for the student mean would remove all the student specific effect not
under the control of the school. However, our heuristic discussion implies that
modeling the correlation in scores across grades neither adjusts for the students’
mean nor necessarily removes all the student specific effects. In particular, het-
erogeneously grouped omitted covariates that predict gains can contribute to esti-
mated teacher effects in the CC and layered models.

Omitted variables differ by strata

Suppose that the population of teachers can be grouped into strata where the
teachers within a stratum teach classes with some overlapping students, but stu-
dents do not overlap across strata. For example, suppose the population contains
two schools and no students switch schools. While there is no overlap across the
schools, there is overlap within schools, because the grade (g + 1) classes contain
students taught by one of the grade g teachers in the prior year.

Now suppose that the mean of the omitted covariate varies across strata. The
class means of the omitted covariate will vary across strata, resulting in intra-
class correlation for the omitted variable when classes are pooled across strata.
As discussed in the previous scenario, when intra-student correlation is ignored
(e.g., in the gain model) the intra-class correlation in the omitted covariate leads
to confounding or errors in the estimated teacher effects that correlate with the
omitted covariate.

However, unlike the previous scenarios, modeling intra-student correlation in
scores will not necessarily reduce bias in the estimated teacher effects. The mixed
model equations are again given by Equation 18. However, stratification of students
and teachers implies that for each stratum, φij = 0 for every student who is in the stra-
tum and every teacher who is not. Thus, Φ contains blocks of zeros corresponding
strata and the product ��R−1Φ with the block diagonal R−1 is also block diagonal
with blocks Ah corresponding to strata. Furthermore the elements of ��R−1r corre-
sponding to any stratum h equals Bhrh for a matrix Bh that depends only on Φ and
R−1. Thus, the estimated effects for teachers from stratum h equal AhBhrh. Given that
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the expected value of rh depends on the stratum mean of the omitted covariate, the
teacher effects are biased. Across the strata the errors in the estimated teacher effects
are correlated with the mean of the omitted covariate.

Note that the confounding as a result of stratification in the population can be
eliminated by including stratum means in the model. However, including stratum
means might be undesirable in practice where the average teacher effects might
also vary across strata. If such heterogeneity across strata in teachers exists then
including stratum means effectively makes all inferences about teachers relative to
the stratum and could result in underestimation of the variability of teacher and bias
in estimated teacher effects. We believe that this is one of the most difficult issues
arising from the use of VAM to estimate school or teacher effects, and we return
to it in the discussion.

Similarly, the inclusion of student level covariates is not necessarily the solu-
tion to bias that results from stratification of the population. The available covari-
ates might not include all factors that effect scores and differ across strata. In
addition, if teacher effects are correlated with the characteristics of the students
they teach, for example, if the most effective teachers teach in affluent schools,
then including covariates in the model will tend to remove part of the teacher effect
(Ballou, Sanders, & Wright, 2004; Raudenbush & Willms, 1995). Such over cor-
recting for covariates will tend to result in systematic errors in estimated teacher
effects and bias low estimated variance components. We return to this point in the
discussion section.

Because the models are for gains, the bias results when mean gain scores differ
across strata. Effects that are constant for students but unrelated to gains can dif-
fer across strata without resulting in bias. For the general model and partially com-
plete data, we cannot translate to gains and the implication is that covariates that
contribute to raw scores as well as those that contribute to gains might confound
the estimated effects.

Simulation study results

We conducted a very small simulation study to demonstrate the mathemat-
ical results described above. We generated data for 200 students grouped into 
10 classes of 20 for each of four grades. Half the students were slow gainers and
half were fast. The difference between groups was roughly a gain score standard
deviation unit. The teacher effects equal evenly distributed percentiles of the nor-
mal distribution with variance 1.0 at each grade and with two teachers at each des-
ignated value. Students were grouped into two schools and they did not switch
schools. At each grade student gains depended upon gainer status, teacher and both
student by grade and student error terms. Within each grade, the student compo-
nent accounted for 70% of the total student residual error. The variance of total stu-
dent residual errors was 1.0.

We repeated the simulation to match the three scenarios discussed above. For
the first scenario, slow and fast gainers were randomly distributed across schools
and teachers. For the second, in each school and at each grade, half the classes had
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5 fast and 15 slow gainers and half had 15 fast and 5 slow. The classes were ran-
domly assigned to teachers at each grade and every student had equal probability of
being in each class. For the final scenario, one school had an expectation of 25%
fast gainer and 75% slow and the other school had 75% fast and 25% slow gainers.
This basic example allows for clear evaluation of the model in unrealistic settings
that highlights the effects of modeling intra-student correlation.

Under the first scenario, the correlation between estimated teacher effects and
the percent of fast gainers in the class was moderate (.45) when the model did not
explicitly model intra-student correlation. However, when we explicitly modeled
the intra-student correlation (with an unstructured variance-covariance matrix) the
correlation was very low (–.04). Thus, when omitted covariates contribute to ran-
dom student effects that are not correlated within classes, they can result in errors
but the layered or CC model will tend to be robust to that correlation. In this case,
accounting for intra-student correlation is analogous to including a random block
term in designed experiments–the blocks are students, and accounting for the intra-
student correlation is analogous to modeling blocks. Because not all teachers are
in all blocks, we must, as is the case with this scenario, have sufficient overlap
among teachers and students to estimate the teacher effects.

As predicted above, under the second scenario (i.e., heterogeneity among
classes in the proportion of high gainers) models that ignored intra-student corre-
lation yielded estimated teacher effects that were highly correlated (.79) with the
means of the omitted covariate. However, modeling the intra-student correlation
greatly reduced the correlation (to .47) between estimated teacher effects and the
class mean of the omitted variable. Thus, modeling student correlation partially
mitigates the omitted covariate bias in the BLUPS in this scenario with extensive
mixing of students across classes.

The effects on the estimated variance components for teacher effects are also
not obvious, but in our small simulation we found that modeling one year of gains
or ignoring the intra-student correlation resulted in upward bias in the estimated
teacher effect. If we control for gainer status we have no apparent teacher effect,
that is, we remove 100% of the spurious variance in teacher effects. Centering each
student about his or her raw mean also removed 100% of the spurious variance
component. When we explicitly modeled intra-student correlation, the bias was
greatly reduced and small, 88 percent of the spurious variance was removed. Thus,
we again find that explicitly modeling the intra-student correlation appears to
greatly reduce the biasing effects of confounding on the teacher variance compo-
nent when students are heterogeneously grouped but not stratified.

When students were stratified as in the third scenario, estimated teacher effects
differed across strata: estimated teacher effects were systematically too large in the
stratum with a disproportionate number of fast gainers, while they were too small in
the other stratum. The correlation between the class average of the omitted variables
and the teacher effects was high (.79) even after modeling intra-student correlation.
If one student crossed the strata (e.g., a very small amount of school transfer) the esti-
mated teacher effects were still correlated with the average of the omitted covariate.

87

Models for Value-Added Modeling of Teacher Effects

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


As transfer leads to complete mixing, the errors will eventually be only weakly cor-
related with the omitted covariates but the amount of mixing necessary will depend
on the specific nature of the covariate, strata and class sizes and the strength of the
covariate for predicting gains. However, including random student effects did greatly
reduce the bias in the estimated teacher variance component.

Teacher Effects Persist with Equal Effect into the Future

Models used to date for estimating teacher effects (TVAAS and RCM) assume
that these effects persist undampened into the future, i.e., all the α’s are identically
equal to one. The validity of this assumption has never been fully explored, and
while there is evidence that some teacher effects are long-lasting (Pederson,
Faucher, & Eaton, 1978), there is considerable reason to conjecture that a teacher’s
effect will dampen over time as students grow and are exposed to other teachers
and other learning experiences. Therefore, we consider model misspecification
where a model is fit treating all α’s fixed at one but where the data are generated
from a model with α’s less than one. The misspecified model can be written as fol-
lows (for ease of notation we will consider the TVAAS model that excludes covari-
ates and consider only grade 2 for now):

Thus, model misspecification results in an omitted covariate, ([α21 − 1]φ′i1θ1).
Because students in a class typically will have been in class together in the past,
the omitted covariates will be correlated among students in the same class. The
means of the omitted covariate will differ by strata if teacher effects differ sys-
tematically across schools with little or no student transfer. Thus on the basis of
the results in the previous section, we can expect this omitted variable to have min-
imal contribution to systematic errors in the teacher effects if teacher effects do not
cluster and result in possible bias if teachers do cluster among schools.

We explored this bias with another small simulation. We randomly generated
scores according to the general model where correlation among scores from the
same student was 0.7 and where (α21, α31, α32) = (0.8, 0.64, 0.8), (0.5, 0.25, 0.5) or
(0.19, 0.11, 0.30) and we had 20 students in each of 20 classes per grade, four in
each of five schools. We simulated data grades 2 to 5 with the grade 3 score inde-
pendent of the grade 2 teacher and we modeled the gain score because our data are
complete. We simulated data where the true teacher effects did not cluster and
where they did with an intra-school correlation for teacher effects of 0.5 or 0.9. We
fit our model only to the gains for grades 3, 4 and 5.

We used the correlation between the true teacher effects and the estimated
teacher effects to measure the impact of model misspecification–low correlation
indicates negative impact due to misspecification. We find that even with this mis-
specified model the correlation between the true teacher effects and the estimates
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is high–above 0.75 when intra-school correlation for teachers equals 0.9 and above
0.8 otherwise. In fact, the correlation between estimated and true effects is nearly
as large for the misspecified as the correlation between the estimate and the true
effects when the estimation model is correct, i.e., the data generating model is the
layered model. For example, when (α21, α31, α32) = (0.8, 0.64, 0.8) the correlation
for misspecified models is over 99% as large as for the correctly specified model.
Even when (α21, α31, α32) = (0.19, 0.11, 0.30) the correlation between estimates and
true effects is at least 95% as large as the corresponding correlation for a correctly
specified model, with the lowest value occurring when teachers are very highly
clustered. Thus, misspecification does not appear to greatly degrade the estimated
teacher effects.

Example

To explore the feasibility of fitting the model, and to estimate the persistence of
teacher effects, we analyzed student achievement data from 678 students from a
large suburban school district. The students in the sample attended a purposively
chosen sample of five elementary schools selected from the district. The chosen
schools have similar proportions of free or reduced price lunch eligible (FRL) stu-
dents. While schools in the district are highly heterogeneous with FRL rates rang-
ing from less than 10% to over 80%, the FRL rates for the sampled schools range
from 11% to 17%. A representative sample of the district’s schools would tend to
violate the model assumptions because the percent of FRL students predicts school
test score means, even above and beyond the effects of lunch status on individual
student outcomes.

Using mathematics scaled scores from the Stanford 9 achievement test for third,
fourth and fifth graders in the five sampled schools, we fit the general model with-
out covariates and with lunch status as a student level covariate. For comparison
we also fit the layered model–i.e., our general model with no covariates and with
all α’s constrained to equal one. We fit the models by maximizing their respective
likelihoods via the nonlinear function optimizer in the R statistical language (Ihaka
& Gentleman, 1996).

Table 1 presents the estimated parameters and standard errors for the three mod-
els. For each model the table presents the teacher and residual error variance com-
ponents (σ2

θ3,σ2
θ4 and σ 2

θ5 and σ 2
�3,σ 2

�4 and σ 2
�5, respectively). It also presents the

cross-grade intra student correlations (ρ34, ρ35 and ρ45) and the persistence measures
for teacher effects (α34, α35 and α45) which by assumption are set to 1 for the layered
model. Finally the table presents the log-likelihood for each model and the likelihood
ratio test statistics and p-values for comparing nested models (general without lunch
status to the layered model or general with to general without lunch status).

There is little evidence for including lunch status in the general model. The like-
lihood ratio test for the inclusion of lunch status is 1.10 with 1 degree of freedom
( p = .294) and the parameter estimates are extremely similar between the two mod-
els. As a result the estimated teacher effects are nearly identical for the two models
(correlation ≈ 1).
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The general model fits the data substantially better than the layered model and
there is strong evidence against the hypothesis that α34 = α35 = α 45 = 1. The likeli-
hood ratio statistic is 47.24 with 3 degrees of freedom ( p < .001). The estimated
α’s are all substantially less then 1 and none is significantly greater than zero sug-
gesting that for these students, prior teacher effects contribute little to current out-
comes. While results from such a small sample of schools and with such a limited
set of covariates must be interpreted cautiously, they suggest that the persistence
of teacher effects and our model warrant further exploration.

The general and layered models also provide notably different estimates of the
teacher variance components. For grade 3, the estimated component for the gen-
eral model is 83 percent larger than the corresponding estimate for the layered
model (138.6 compared to 75.7). For grade 4 the estimate for the general model is
only 80% as large (73.6 versus 91.6); while at grade 5, the estimate for the general
model is 54% larger (51.2 versus 33.1). As a result the models yield very different
estimates of the teachers’ total contribution to variance as determined by Σg

t = 0 α gtσ2
θt

and Σg
t = 0 σT2

θt. For the general model, the teachers’ total contribution to variance falls
from 138.6 to 78.6 and then to 59.5 or 8.7, 5.6 and 4.5% total variance in scores,
as students move from grade 3 to 5. The corresponding estimates for the layered
model are 75.7, 167.3 and 200.4 or 4.8, 11.5 and 14.1 percent of the total variance.
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TABLE 1
Parameter Estimates, Standard Errors and Log Likelihood at the MLE

Estimate SE

General General Layered General General Layered
Parameter nocov FRL nocov nocov FRL nocov

σ 2
�3 1454 1443 1495 94 94 100

σ 2
�4 1313 1306 1284 84 84 83

σ 2
�5 1258 1244 1222 81 81 81

ρ34 0.83 0.82 0.80 0.02 0.02 0.02
ρ35 0.82 0.82 0.79 0.02 0.02 0.02
ρ45 0.84 0.84 0.82 0.01 0.02 0.02
σ 2

θ3 139 137 76 71 71 51
σ 2

θ4 74 74 92 34 35 42
σ 2

θ5 51 52 33 24 25 17
α34 0.2 0.2 1 0.2 0.2
α35 0.1 0.1 1 0.2 0.2
α45 0.3 0.3 1 0.2 0.2
µfrl NA −2.03 NA 2
max LL −5219.82 −5219.27 −5243.44
LRT statistic NA 1.10 47.24

( p = .294) ( p < .001)

Note. general nocov = general model without covariates
general frl = with student FRL status
layered nocov = layered model without covariates
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The general model suggests that teachers contribute less as students progress
through schools, while the layered model suggests the opposite.

Although the models provide very different pictures of the teachers’ contri-
bution to variability in scores, they provide reasonably similar estimates of indi-
vidual teacher’s effects. Pooling all three grades of estimated effects, the
correlation between the BLUPs from the two models is .69 and is as high as .83
for grade 4 and .91 for grade 5. As suggested by mathematical and simulation-based
analysis, BLUPs can be robust to certain model choices such as constraining all
α ≡ 1. The models also produce similar estimates for the intra-student correlation
coefficients. Both models suggest strong intra-student correlation in the residual
error terms that is roughly constant at just above 0.8 for grade 3, 4 and 5 test
scores.

We also explored the efficiency of estimated teacher effects based on these two
models. Of particular interest was the effect that estimating the α coefficients had
on the precision of the estimates. The Bayesian framework provides the best for-
mat for discussing the precision of estimates while accounting for imprecision in
the estimated variance components and other parameters.

Developing a fully Bayesian implementation of these complex models was
outside the scope of this study, so we approximated the posterior distribution of
the variance components, fixed effects and α’s (“a” denotes the combined vec-
tor of these parameters) by the asymptotic normal distribution of the maximum
likelihood estimates. This is the approximate posterior distribution under a non-
informative prior distribution (Daniels & Kass, 1998). We then sampled draws
from this approximate posterior distribution. Using these draws we calculated
the estimated teacher effects E(θ Y, a) and estimated conditional variance of
these effects V(θ Y, a) for each sampled parameter vector. Across many samples
from the approximate posterior, these values lead to Monte Carlo estimates of
the posterior mean and variance of θ given the data. In addition, Monte Carlo
estimation of quantities such as P (θ > 0 Y ) is straightforward because θ is nor-
mally distributed conditional on Y and a.

We found that across teachers the median of the posterior variance was about
17.7 and 12.9 for the layered model for grades 4 and 5 respectively, and 22.4 and
18.5 for the general model by grade. This corresponds to medians for the ratio of
posterior to prior variance in teacher effects of .2 and .4 for the layered model for
grades 4 and 5 and .3 and .4 for the general model. The posterior variance essen-
tially equals prediction error in the frequentist perspective (Searle et al., 1992).
Thus, we have prediction errors that are only between 19% and 39% as large as
they would have been had we not used test scores to make our predictions. The
estimates are moderately precise and estimating the α’s did not greatly degrade the
precision of our estimates.

Figure 2 demonstrates how these levels of precision affect inferences about indi-
vidual teachers. The left panel of Figure 2 is a scatter plot of the posterior probabil-
ities that teacher effects are greater than zero for the layered model plotted against
the posterior probabilities for the general model for grade 4 teachers. The right panel
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of Figure 2 is the corresponding plot for grade 5 teachers. If imprecision in the esti-
mated teacher effects was very large relative to variability in the true effects, then
we would expect to find the estimated probabilities to be clustered around one half.
However, this is not what we find. For each grade the estimate probabilities for both
models range from near zero to near one with about a quarter to a third of teachers
having a high (greater than 0.9) probability of being distinctly different from the
mean. Generally, the two models provide very similar results and differences
between the posterior probabilities for the two models are often more the results of
differences in the estimated teacher effects than in the posterior variances.

As a test of the models on heterogeneous populations, we repeated the study
with four of the five charter schools that also serve students from this district.3 The
percent FRL students for the four charter schools, as determined by the cohort in
third grade in 1999, is 12, 18, 67 and 79 percent. Percent FRL predicts school and
classroom mean scores and gains, even after controlling for individual student FRL
status. Almost no students transferred between these schools and thus these char-
ter schools are an example stratification by an omitted covariate.

For these charter schools, Figure 3 plots the estimated teacher effects (BLUPs)
against the percentage FRL students in the school. The left panel plots the BLUPs
from a model without covariates and shows clearly that estimated teacher effects are
strongly related to percentage FRL students. The average BLUPs (marked by X)
for the two schools serving a low percentage of FRL students are larger than the
averages for schools with a high percentage FRL students. Including lunch status
as a student-level covariate has almost no effect on the estimates and these esti-
mates are not shown in the figure.

The right panel of Figure 3 plots the BLUPs for a model that includes school fixed
effects. In this panel, the estimated BLUPs are essentially uncorrelated with the per-
centage of students eligible for the lunch program. In addition, by removing vari-
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FIGURE 2. Scatterplots of the posterior probability that the teacher effect is greater than
zero for the layered and general models by grade.
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ability related to schools, the fixed effects model estimates smaller teacher variance
components resulting in much less dispersion of the BLUPs within schools.

Although including school fixed effects removed the correlation between
teacher effects and characteristics of the student population, the model does not
disentangle true teacher effects from differences in the student population. In par-
ticular, we cannot distinguish what are sometimes called “peer” or “neighborhood”
effects where the student population actually affects an individual student’s out-
comes from heterogeneity in teacher assignments where schools serving lower
SES populations attract the least capable teachers. Excluding school effects can
bias estimated teacher effects by confounding population effects with true teacher
effects. Including school effects can remove legitimate differences in teacher
effects among schools. Without additional data, the true source of heterogeneity in
scores among schools cannot be determined. Additional covariates might help to
disentangle these competing hypotheses but for the most part excessive hetero-
geneity among the student populations served by schools will result in estimates
of teacher effects that are difficult to interpret.

Discussion

The goal of this effort was to explore the issues raised by the application of
value-added modeling of student achievement as a means of evaluating teachers
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and, by extension, schools. We provide a general model for applying VAM to this
purpose and show that all of the currently prominent VAM models of achievement
can be seen as restricted cases of this general model. The general model provided
a framework for comparing the common models and for evaluating some of the
general issues raised by this use of VAM.

Because the computational burden of VAM models has been a concern, it is
important to note that fitting the general model proved both feasible and useful for
two moderately sized samples of scores from students enrolled in four or five ele-
mentary schools from a single large suburban district. The R statistical software
run on an off-the-shelf PC workstation was sufficient to maximize the likelihood
and provide parameter estimates in a matter of hours.

One difference between our general model and all of the alternative models
we reviewed is the assumptions made about the contribution of prior-year teach-
ers to current-year test scores. All of the common models, such as the layered
and cross-classified models, assume that these effects persist undiminished over
time. In the notation of our general model, they constrain the α parameters to
equal one. In contrast, our general model treats the persistence of teacher effects
as an unknown and directly estimates the α parameters. The assumption of undi-
minished teacher effects required by the alternative models is not empirically or
theoretically justified and seems on its face not to be entirely plausible. Decay-
ing effects are the norm in much of social science research. In both of the sam-
ples noted above, the general model provided a significantly better fit to the data
than the layered model, which forces the α parameters to equal one. Therefore
the ability to estimate the α parameters directly may be of great use, and further
research exploring this issue is needed.

The models also differ in their treatment of the intra-student covariance struc-
ture. The cross-classified and the layered models are very similar in this respect,
with the layered model allowing more general intra-student covariance structure
than the cross-classified model. Estimated teacher effects from both models depend
on the adjusted average gain scores for students in their classes, and the adjust-
ments to the gain scores depend on the students’ gains from other years. The vari-
ability of the total teacher contribution to scores necessarily increases with grade
for both these models. However, for many standard assessments, the variance in
vertically linked scale scores does not increase with grade. The effects of this pos-
sible incompatibility between the model and the data are unknown and warrant fur-
ther research. An attractive feature of the general model is that because αs can be
less than one, the model does not presuppose that variability in the total teacher
contribution increases with grade.

One of the major concerns pertaining to all VAM evaluations of teachers is the
possibility of bias from the exclusion of covariates, such as student background
characteristics. In theory, the omission of covariates that contributes to outcomes
can bias parameter estimates when students are stratified by those covariates. This
has been a criticism of TVAAS estimates of teacher effects (Ballou, 2002). On the
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other hand, individually, both William Sanders and Brian Rowan (personal com-
munications) have argued that adjusting for student-level covariates does not have
a great impact on estimated teacher effects. We found that the answer to this argu-
ment is complex and depends on the distribution of the omitted covariates and the
assignment of students to teachers.

The example in this article is consistent with the comments of Sanders and
Rowan that the omission of student-level covariates may not have substantial
impact in some cases. And in some cases, modeling the intra-student correlation
can mitigate the effects of omitted covariates. However, we found that this is an
incomplete answer.

When the student population is stratified into groups that are heterogeneous with
respect to the omitted covariates and share few teachers, the omitted covariates will
be confounded with teacher effects regardless of the model for intra-student corre-
lation. In the example, adding a student-level FRL indicator to the model had almost
no effect on model parameters or estimated teacher effects. However, school aver-
age FRL was correlated with school mean scores and gains. Moreover, average FRL
predicted scores even after controlling for individual student lunch status. In other
words, there were contextual effects for FRL. Controlling for student-level covari-
ates alone is not sufficient to remove the effects of background characteristics in our
example and might not be in practical situations. For example, Lee and Bryk (1989)
also find contextual effects for student socio-economic status.

Furthermore, controlling for covariates (student or school level) is not as sim-
ple as including the covariates in the regression model. When the true teacher
effects are correlated with student characteristics, including student covariates in
the model can result in systematic errors in estimated teacher effects. The bias
arises because the model attributes the true effects of student covariates and a por-
tion of the teacher effect to the estimated effect of the covariate and thus wrong-
fully removes from estimated teacher effect the portion of the true teacher effect
that correlates with the covariate. As previously discussed, excluding the covari-
ate from the model has the opposite effect of attributing a portion of the student
covariates to the estimated teacher effects.

Although the bias from including student covariates can result whether they are
student-level or aggregated to the classroom or school level, controlling for aggregate-
level variable and contextual effects poses particular challenges. Some have sug-
gested using the intra-classroom variability of students to provide information for
estimating the effects of student-level covariates on test scores and to remove the
effects of student-level covariates from estimated teacher effects (Ballou et al.,
2003). However, intra-classroom variance cannot be used to estimate contextual
effects of aggregate characteristics such as classrooms, schools, peers, and neigh-
borhoods and cannot be used to separate these effects from true differences in the
educational effectiveness of teachers and schools. Thus, finding methods for sep-
arating contextual effects from teacher effects is likely to be challenging. It may
require collecting detailed data on teachers and teacher assignments that generally
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are not currently available and may also require making untestable assumptions.
However, such methods are important because, heterogeneous populations are
likely to be common especially in large school systems and, as our example
demonstrates, contextual effects do exist in some school systems.

A key question is the amount of uncertainty in estimates of teacher effects. Numer-
ous observers have asked whether estimates from these models are sufficiently pre-
cise to be usable. This paper does not fully address the issue of uncertainty but does
shed light on this question. To clarify the implications of this work, however, it is
essential to distinguish between model uncertainty and uncertainty stemming from
the variability of student scores.

In this article, we used our general model to highlight model uncertainty
resulting from assumptions about the persistence of teacher effects, the correla-
tion of scores across grades, and omitted covariates. Relaxing model assump-
tions by fitting our more general model provides a means of accounting for a
portion of model uncertainty that is typically ignored when fitting more restric-
tive models. The practical impact of model uncertainty will vary from case to
case but could be substantial.

Imprecision resulting from variability in student scores will depend on the over-
all sample size, the sample size per class, and the ratios of teacher and school vari-
ance components to the variances component for residual errors. We used our
example to study variability in scores. We found that even with only a moderate
sized sample, the variability in student scores was sufficiently small so that both
the general model and the layered model identified about one fourth to one third of
teachers as distinct from the mean.

On the other hand, VAM models will be used to support inferences other than
differences from the mean, and the estimates from VAM modeling of achievement
will often be too imprecise to support some of the desired inferences. For exam-
ple, Lockwood, Louis and McCaffrey (2002) found that precise ranking of teach-
ers generally requires the ratio of posterior to prior variance in teacher effects to
be very small–no more than 0.1. Thus, in our example, our posterior precision
would need to be 2 to 4 times greater to provide meaningful estimates of ranks and
accurate identification of teachers in extremes of the distribution.

In general, obtaining sufficiently precise estimates of teacher effects to sup-
port ranking is likely to be a challenge. Student test score data tend to be far from
ideal, with relatively small classes and substantial numbers of missing values. In
addition, models require numerous assumptions that contribute to model uncer-
tainty. Methods to improve precision might include pooling data across years to
estimate multi-year average teacher effects. Analysts might also use more restric-
tive models and ignore the uncertainty in those assumptions–in Bayesian par-
lance use informative priors to improve posterior variance. More restrictive
assumptions about some features of the models, might actually make the models
more robust to other assumptions. For example, the general model might be more
sensitive to omitted covariates that affect levels but not gain scores than either
the layered or CC model.
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While this article explores a variety of issues raised by various approaches to
VAM estimates of teacher effects, several important issues are not explored. One
important issue that is not explored in this paper is the potential impact of missing
data. All the models presented in this paper assume noninformative missing data.
The sensitivity of estimates of teacher effects to violations of this assumption has
not been explored. However, given the large proportion of missing data in many
achievement databases and known differences between students with complete and
incomplete test data, it is possible that estimates may be highly sensitive to this (or
other) assumptions about missing data. This use of VAM also requires assump-
tions about the consistency of results across the range of scales currently used to
measure achievement, as well as other plausible scales that may not be used in
VAM efforts undertaken to date. We also noted above that assumptions about the
correlations between teacher effects and student characteristics are likely to have
an effect on VAM estimates, so further empirical exploration of these relationships
and of the impact of assumptions about them could be important.

It is likely that precise estimation of teacher effect will always require assump-
tions or informative priors. Thus, our work should be interpreted as the first step
toward making analysts and consumers of estimated effects aware of the possible
impact of model assumptions and toward identifying topics for additional research.
By conducting such research we might be able to make well-informed restrictions
to models and produce estimates with sufficiently large precision and sufficiently
small bias to be useful for making the desired inferences about teachers.

Notes
1 Brian Rowan (personal communication) reports that when included in the

model these interactions had almost no effect on teacher variance components.
2 If the conditional expectation of yg given yg − 1 is nonlinear, then the covariate

model is not a special case of the general model, which assumes that scores are nor-
mally distributed so that conditional expectations is linear. However, the common
linear model specification of the covariate adjustment model is a special case of
the general model.

3 We excluded one charter school because of anomalies in the third grade test
score data.

Appendix
Intra-Student Correlation and Model Estimates

We focus on a model for the vectors of student gain scores following the dis-
cussion above. However, rather than let the ζit, t = 1, 2, 3 have an unspecified
covariance structure, we assume ζit = ηi + eit where the ηi are N(0, ν2) and the eit

are iid random variables with variance σ2. This model assumes constant correla-
tion among the observations from the same student. For now we will also assume
that all the teacher effects are iid N(0, τ2). 

97

Models for Value-Added Modeling of Teacher Effects

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


Model A1

The main parameter of interest is τ2 the variance in the teacher effects and will
be estimated by the maximum likelihood estimator (MLE). The likelihood is
complex and involves matrix inversion that prevents simple analytic evaluation.
However, the EM algorithm provides a means of maximizing the likelihood that
also provides insight in the contributions of student scores to the estimated
teacher effect.

First, we will write Model A1 in vector notation

where � and � are the vectors of teacher and student effects respectively and Z1 and
Z2 map the specific effect to the correct students and years. The EM algorithm is iter-
ative. At the mth step of the algorithm, the current estimates of τ2 and ν2 are given by

where q1 equals the total number of teachers across all years and q2 equals the
number of students. We let V denote the variance-covariance matrix for d as
determined by Model A1 and r equal d less the current estimate of δ. Then t1 and
t2 are given by:

where c1 and c2 are correction terms that involve only the current estimates of the
variance components.
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The terms Z′1V−1r and Z ′2V−1r are the best linear unbiased predictors (BLUPs) of
θ and η given the current values for the variance components. Under the assump-
tions of normally distributed data, the BLUPs are the conditional mean of θ and η
given the observed change scores d. Consider a single element of θ, θs,

where λ = τ2/(τ2 + σ2/n) assuming n students per class. At each iteration unknown
parameters are replaced by their current estimates.

The BLUP of the teacher effects depends on the conditional mean of the student
effects and using a similar approach we find that the conditional mean of ηij is

where each student has three scores and ω = ν2/(ν2 + σ2/3). Again the student effect
depends on the conditional mean of the teacher effect.

Thus, the estimate of the teacher variance component depends on adjusted resid-
uals gains. The gains are adjusted by the fixed time effect and the BLUP of the stu-
dent effect. The BLUP of the student effect depends on the students’ mean gain but
is adjusted by the teacher effect estimates from the previous step of the algorithm.
In particular, if a student has a, say, large mean residual, but was in classrooms with
large mean residuals, the student effect estimate will be much closer to the dit than
it would be if there was no classroom heterogeneity in scores. Thus classroom het-
erogeneity in scores dampens the “shrinkage” in the student effect estimates. Thus,
teacher effect variance component estimate is larger than it would be if we used a
fixed student effects model. On the other hand, the teacher effect variance compo-
nent estimate is smaller than it would be if we ignored the correlation among the
multiple measures from a single student.

By considering this simple model and the use of the EM algorithm we were
able to understand how allowing for correlation among the multiple measures
from the same student yields an estimate of the teacher variance component that
is a compromise between ignoring the correlation among these measure and a
student fixed effect. However, if student gains are related to fixed student 
characteristics such as socio-economic status or parental education, and these 
characteristics are heterogeneously distributed across classes, then the random
effects model considered here would include the effect of these student charac-
teristics in the teacher effect.

E d Ei it it is t sist
η ω δ φ θd d( ) = − − ( )[ ]( )∑∑ 3

E E E

E d n

E d E n

s s

s is t it it i
is

s is t it it i
is

θ θ η

θ η φ δ η

θ φ δ η

d d

d

d d

( ) = ( ){ }

( ) = − −( )

( ) = − − ( )[ ]

( )

( )

∑

∑

,

, �

�

99

Models for Value-Added Modeling of Teacher Effects

 at ARIZONA STATE UNIV on December 11, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net
http://jebs.aera.net


The model we considered was simple but clearly demonstrates how the data are
used to estimate the teacher variance component. The contributions of student to
teacher effects in the complex layered model will not take on the simple form pre-
sented here, but the tradeoff between adjusting for the student and adjusting for his
or her teachers will occur. The student effects will differently weight different data
from different years but the heuristic notions presented in the appendix apply.
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