New Texas Lawsuit: VAM-Based Estimates as Indicators of Teachers’ “Observable” Behaviors

Last week I spent a few days in Austin, one day during which I provided expert testimony for a new state-level lawsuit that has the potential to impact teachers throughout Texas. The lawsuit — Texas State Teachers Association (TSTA) v. Texas Education Agency (TEA), Mike Morath in his Official Capacity as Commissioner of Education for the State of Texas.

The key issue is that, as per the state’s Texas Education Code (Sec. § 21.351, see here) regarding teachers’ “Recommended Appraisal Process and Performance Criteria,” The Commissioner of Education must adopt “a recommended teacher appraisal process and criteria on which to appraise the performance of teachers. The criteria must be based on observable, job-related behavior, including: (1) teachers’ implementation of discipline management procedures; and (2) the performance of teachers’ students.” As for the latter, the State/TEA/Commissioner defined, as per its Texas Administrative Code (T.A.C., Chapter 15, Sub-Chapter AA, §150.1001, see here), that teacher-level value-added measures should be treated as one of the four measures of “(2) the performance of teachers’ students;” that is, one of the four measures recognized by the State/TEA/Commissioner as an “observable” indicator of a teacher’s “job-related” performance.

While currently no district throughout the State of Texas is required to use a value-added component to assess and evaluate its teachers, as noted, the value-added component is listed as one of four measures from which districts must choose at least one. All options listed in the category of “observable” indicators include: (A) student learning objectives (SLOs); (B) student portfolios; (C) pre- and post-test results on district-level assessments; and (D) value-added data based on student state assessment results.

Related, the state has not recommended or required that any district, if the value-added option is selected, to choose any particular value-added model (VAM) or calculation approach. Nor has it recommended or required that any district adopt any consequences as attached to these output; however, things like teacher contract renewal and sharing teachers’ prior appraisals with other districts in which teachers might be applying for new jobs is not discouraged. Again, though, the main issue here (and the key points to which I testified) was that the value-added component is listed as an “observable” and “job-related” teacher effectiveness indicator as per the state’s administrative code.

Accordingly, my (5 hour) testimony was primarily (albeit among many other things including the “job-related” part) about how teacher-level value-added data do not yield anything that is observable in terms of teachers’ effects. Likewise, officially referring to these data in this way is entirely false, in fact, in that:

  • “We” cannot directly observe a teacher “adding” (or detracting) value (e.g., with our own eyes, like supervisors can when they conduct observations of teachers in practice);
  • Using students’ test scores to measure student growth upwards (or downwards) and over time, as is very common practice using the (very often instructionally insensitive) state-level tests required by No Child Left Behind (NCLB), and doing this once per year in mathematics and reading/language arts (that includes prior and other current teachers’ effects, summer learning gains and decay, etc.), is not valid practice. That is, doing this has not been validated by the scholarly/testing community; and
  • Worse and less valid is to thereafter aggregate this student-level growth to the teacher level and then call whatever “growth” (or the lack thereof) is because of something the teacher (and really only the teacher did), as directly “observable.” These data are far from assessing a teacher’s causal or “observable” impacts on his/her students’ learning and achievement over time. See, for example, the prior statement released about value-added data use in this regard by the American Statistical Association (ASA) here. In this statement it is written that: “Research on VAMs has been fairly consistent that aspects of educational effectiveness that are measurable and within teacher control represent a small part of the total variation [emphasis added to note that this is variation explained which = correlational versus causal research] in student test scores or growth; most estimates in the literature attribute between 1% and 14% of the total variability [emphasis added] to teachers. This is not saying that teachers have little effect on students, but that variation among teachers [emphasis added] accounts for a small part of the variation [emphasis added] in [said test] scores. The majority of the variation in [said] test scores is [inversely, 86%-99% related] to factors outside of the teacher’s control such as student and family background, poverty, curriculum, and unmeasured influences.”

If any of you have anything to add to this, please do so in the comments section of this post. Otherwise, I will keep you posted on how this goes. My current understanding is that this one will be headed to court.

New Article Published on Using Value-Added Data to Evaluate Teacher Education Programs

A former colleague, a current PhD student, and I just had an article released about using value-added data to (or rather not to) evaluate teacher education/preparation, higher education programs. The article is titled “An Elusive Policy Imperative: Data and Methodological Challenges When Using Growth in Student Achievement to Evaluate Teacher Education Programs’ ‘Value-Added,” and the abstract of the article is included below.

If there is anyone out there who might be interested in this topic, please note that the journal in which this piece was published (online first and to be published in its paper version later) – Teaching Education – has made the article free for its first 50 visitors. Hence, I thought I’d share this with you all first.

If you’re interested, do access the full piece here.

Happy reading…and here’s the abstract:

In this study researchers examined the effectiveness of one of the largest teacher education programs located within the largest research-intensive universities within the US. They did this using a value-added model as per current federal educational policy imperatives to assess the measurable effects of teacher education programs on their teacher graduates’ students’ learning and achievement as compared to other teacher education programs. Correlational and group comparisons revealed little to no relationship between value-added scores and teacher education program regardless of subject area or position on the value-added scale. These findings are discussed within the context of several very important data and methodological challenges researchers also made transparent, as also likely common across many efforts to evaluate teacher education programs using value-added approaches. Such transparency and clarity might assist in the creation of more informed value-added practices (and more informed educational policies) surrounding teacher education accountability.

David Berliner on The Purported Failure of America’s Schools

My primary mentor, David Berliner (Regents Professor at Arizona State University (ASU)) wrote, yesterday, a blog post for the Equity Alliance Blog (also at ASU) on “The Purported Failure of America’s Schools, and Ways to Make Them Better” (click here to access the original blog post). See other posts about David’s scholarship on this blog here, here, and here. See also one of our best blog posts that David also wrote here, about “Why Standardized Tests Should Not Be Used to Evaluate Teachers (and Teacher Education Programs).”

In sum, for many years David has been writing “about the lies told about the poor performance of our students and the failure of our schools and teachers.” For example, he wrote one of the education profession’s all time classics and best sellers: The Manufactured Crisis: Myths, Fraud, And The Attack On America’s Public Schools (1995). If you have not read it, you should! All educators should read this book, on that note and in my opinion, but also in the opinion of many other iconic educational scholars throughout the U.S. (Paufler, Amrein-Beardsley, Hobson, under revision for publication).

While the title of this book accurately captures its contents, more specifically it “debunks the myths that test scores in America’s schools are falling, that illiteracy is rising, and that better funding has no benefit. It shares the good news about public education.” I’ve found the contents of this book to still be my best defense when others with whom I interact attack America’s public schools, as often misinformed and perpetuated by many American politicians and journalists.

In this blog post David, once again, debunks many of these myths surrounding America’s public schools using more up-to-date data from international tests, our country’s National Assessment of Educational Progress (NAEP), state-level SAT and ACT scores, and the like. He reminds us of how student characteristics “strongly influence the [test] scores obtained by the students” at any school and, accordingly, “strongly influence” or bias these scores when used in any aggregate form (e.g., to hold teachers, schools, districts, and states accountable for their students’ performance).

He reminds us that “in the US, wealthy children attending public schools that serve the wealthy are competitive with any nation in the world…[but in]…schools in which low-income students do not achieve well, [that are not competitive with many nations in the world] we find the common correlates of poverty: low birth weight in the neighborhood, higher than average rates of teen and single parenthood, residential mobility, absenteeism, crime, and students in need of special education or English language instruction.” These societal factors explain poor performance much more (i.e., more variance explained) than any school-level, and as pertinent to this blog, teacher-level factor (e.g., teacher quality as measured by large-scale standardized test scores).

In this post David reminds us of much, much more, that we need to remember and also often recall in defense of our public schools and in support of our schools’ futures (e.g., research-based notes to help “fix” some of our public schools).

Again, please do visit the original blog post here to read more.

Difficulties When Combining Multiple Teacher Evaluation Measures

A new study about multiple “Approaches for Combining Multiple Measures of Teacher Performance,” with special attention paid to reliability, validity, and policy, was recently published in the American Educational Research Association (AERA) sponsored and highly-esteemed Educational Evaluation and Policy Analysis journal. You can find the free and full version of this study here.

In this study authors José Felipe Martínez – Associate Professor at the University of California, Los Angeles, Jonathan Schweig – at the RAND Corporation, and Pete Goldschmidt – Associate Professor at California State University, Northridge and creator of the value-added model (VAM) at legal issue in the state of New Mexico (see, for example, here), set out to help practitioners “combine multiple measures of complex [teacher evaluation] constructs into composite indicators of performance…[using]…various conjunctive, disjunctive (or complementary), and weighted (or compensatory) models” (p. 738). Multiple measures in this study include teachers’ VAM estimates, observational scores, and student survey results.

While authors ultimately suggest that “[a]ccuracy and consistency are greatest if composites are constructed to maximize reliability,” perhaps more importantly, especially for practitioners, authors note that “accuracy varies across models and cut-scores and that models with similar accuracy may yield different teacher classifications.”

This, of course, has huge implications for teacher evaluation systems as based upon multiple measures in that “accuracy” means “validity” and “valid” decisions cannot be made as based on “invalid” or “inaccurate” data that can so arbitrarily change. In other words, what this means is that likely never will a decision about a teacher being this or that actually mean this or that. In fact, this or that might be close, not so close, or entirely wrong, which is a pretty big deal when the measures combined are assumed to function otherwise. This is especially interesting, again and as stated prior, that the third author on this piece – Pete Goldschmidt – is the person consulting with the state of New Mexico. Again, this is the state that is still trying to move forward with the attachment of consequences to teachers’ multiple evaluation measures, as assumed (by the state but not the state’s consultant?) to be accurate and correct (see, for example, here).

Indeed, this is a highly inexact and imperfect social science.

Authors also found that “policy weights yield[ed] more reliable composites than optimal prediction [i.e., empirical] weights” (p. 750). In addition, “[e]mpirically derived weights may or may not align with important theoretical and policy rationales” (p. 750); hence, the authors collectively referred others to use theory and policy when combining measures, while also noting that doing so would (a) still yield overall estimates that would “change from year to year as new crops of teachers and potentially measures are incorporated” (p. 750) and (b) likely “produce divergent inferences and judgments about individual teachers (p. 751). Authors, therefore, concluded that “this in turn highlights the need for a stricter measurement validity framework guiding the development, use, and monitoring of teacher evaluation systems” (p. 751), given all of this also makes the social science arbitrary, which is also a legal issue in and of itself, as also quasi noted.

Now, while I will admit that those who are (perhaps unwisely) devoted to the (in many ways forced) combining of these measures (despite what low reliability indicators already mean for validity, as unaddressed in this piece) might find some value in this piece (e.g., how conjunctive and disjunctive models vary, how principal component, unit weight, policy weight, optimal prediction approaches vary), I will also note that forcing the fit of such multiple measures in such ways, especially without a thorough background in and understanding of reliability and validity and what reliability means for validity (i.e., with rather high levels of reliability required before any valid inferences and especially high-stakes decisions can be made) is certainly unwise.

If high-stakes decisions are not to be attached, such nettlesome (but still necessary) educational measurement issues are of less importance. But any positive (e.g., merit pay) or negative (e.g., performance improvement plan) consequence that comes about without adequate reliability and validity should certainly cause pause, if not a justifiable grievance as based on the evidence provided herein, called for herein, and required pretty much every time such a decision is to be made (and before it is made).

Citation: Martinez, J. F., Schweig, J., & Goldschmidt, P. (2016). Approaches for combining multiple measures of teacher performance: Reliability, validity, and implications for evaluation policy. Educational Evaluation and Policy Analysis, 38(4), 738–756. doi: 10.3102/0162373716666166 Retrieved from http://journals.sagepub.com/doi/pdf/10.3102/0162373716666166

Note: New Mexico’s data were not used for analytical purposes in this study, unless any districts in New Mexico participated in the Bill & Melinda Gates Foundation’s Measures of Effective Teaching (MET) study yielding the data used for analytical purposes herein.

Last Saturday Night Live’s VAM-Related Skit

For those of you who may have missed it last Saturday, Melissa McCarthy portrayed Sean Spicer — President Trump’s new White House Press Secretary and Communications Director — in one of the funniest of a very funny set of skits recently released on Saturday Night Live. You can watch the full video, compliments of YouTube, here:

In one of the sections of the skit, though, “Spicer” introduces “Betsy DeVos” — portrayed by Kate McKinnon and also just today confirmed as President Trump’s Secretary of Education — to answer some very simple questions about today’s public schools which she, well, very simply could not answer. See this section of the clip starting at about 6:00 (of the above 8:00 minute total skit).

In short, “the man” reporter asks “DeVos” how she values “growth versus proficiency in [sic] measuring progress in students.” Literally at a loss of words, “DeVos” responds that she really doesn’t “know anything about school.” She rambles on, until “Spicer” pushes her off of the stage 40-or-so seconds later.

Humor set aside, this was the one question Saturday Night Live writers wrote into this skit, which reminds us that what we know more generally as the purpose of VAMs is still alive and well in our educational rhetoric as well as popular culture. As background, this question apparently came from Minnesota Sen. Al Franken’s prior, albeit similar question during DeVos’s confirmation hearing.

Notwithstanding, Steve Snyder – the editorial director of The 74 — an (allegedly) non-partisan, honest, and fact-based backed by Editor-in-Chief Campbell Brown (see prior posts about this news site here and here) — took the opportunity to write a “featured” piece about this section of the script (see here). The purpose of the piece was, as the title illustrates, to help us “understand” the skit, as well as it’s important meaning for all of “us.”

Snyder notes that Saturday Night Live writers, with their humor, might have consequently (and perhaps mistakenly) “made their viewers just a little more knowledgeable about how their child’s school works,” or rather should work, as “[g]rowth vs. proficiency is a key concept in the world of education research.” Thereafter, Snyder falsely asserts that more than 2/3rds of educational researchers agree that VAMs are a good way to measure school quality. If you visit the actual statistic cited in this piece, however, as “non-partison, honest, and fact-based” that it is supposed to be, you would find (here) that this 2/3rds consists of 57% of responding American Education Finance Association (AEFA) members, and AEFA members alone, who are certainly not representative of “educational researchers” as claimed.

Regardless, Snyder asks: “Why are researchers…so in favor of [these] growth measures?” Because this disciplinary subset does not represent educational researchers writ large, but only a subset, Snyder.

As it is with politics today, many educational researchers who define themselves as aligned with the disciplines of educational finance or educational econometricians are substantively more in favor of VAMs than those who align more with the more general disciplines of educational research and educational measurement, methods, and statistics, in general. While this is somewhat of a sweeping generalization, which is not wise as I also argue and also acknowledge in this piece, there is certainly more to be said here about the validity of the inferences drawn here, and (too) often driven via the “media” like The 74.

The bottom line is to question and critically consume everything, and everyone who feels qualified to write about particular things without enough expertise in most everything, including in this case good and professional journalism, this area of educational research, and what it means to make valid inferences and then responsibly share them out with the public.

Another Study about Bias in Teachers’ Observational Scores

Following-up on two prior posts about potential bias in teachers’ observations (see prior posts here and here), another research study was recently released evidencing, again, that the evaluation ratings derived via observations of teachers in practice are indeed related to (and potentially biased by) teachers’ demographic characteristics. The study also evidenced that teachers representing racial and ethnic minority background might be more likely than others to not only receive lower relatively scores but also be more likely identified for possible dismissal as a result of their relatively lower evaluation scores.

The Regional Educational Laboratory (REL) authored and U.S. Department of Education (Institute of Education Sciences) sponsored study titled “Teacher Demographics and Evaluation: A Descriptive Study in a Large Urban District” can be found here, and a condensed version of the study can be found here. Interestingly, the study was commissioned by district leaders who were already concerned about what they believed to be occurring in this regard, but for which they had no hard evidence… until the completion of this study.

Authors’ key finding follows (as based on three consecutive years of data): Black teachers, teachers age 50 and older, and male teachers were rated below proficient relatively more often than the same district teachers to whom they were compared. More specifically,

  • In all three years the percentage of teachers who were rated below proficient was higher among Black teachers than among White teachers, although the gap was smaller in 2013/14 and 2014/15.
  • In all three years the percentage of teachers with a summative performance rating who were rated below proficient was higher among teachers age 50 and older than among teachers younger than age 50.
  • In all three years the difference in the percentage of male and female teachers with a summative performance rating who were rated below proficient was approximately 5 percentage points or less.
  • The percentage of teachers who improved their rating during all three year-to-year
    comparisons did not vary by race/ethnicity, age, or gender.

This is certainly something to (still) keep in consideration, especially when teachers are rewarded (e.g., via merit pay) or penalized (e.g., vie performance improvement plans or plans for dismissal). Basing these or other high-stakes decisions on not only subjective but also likely biased observational data (see, again, other studies evidencing that this is happening here and here), is not only unwise, it’s also possibly prejudiced.

While study authors note that their findings do not necessarily “explain why the
patterns exist or to what they may be attributed,” and that there is a “need
for further research on the potential causes of the gaps identified, as well as strategies for
ameliorating them,” for starters and at minimum, those conducting these observations literally across the country must be made aware.

Citation: Bailey, J., Bocala, C., Shakman, K., & Zweig, J. (2016). Teacher demographics and evaluation: A descriptive study in a large urban district. Washington DC: U.S. Department of Education. Retrieved from http://ies.ed.gov/ncee/edlabs/regions/northeast/pdf/REL_2017189.pdf

Miami-Dade, Florida’s Recent “Symbolic” and “Artificial” Teacher Evaluation Moves

Last spring, Eduardo Porter – writer of the Economic Scene column for The New York Times – wrote an excellent article, from an economics perspective, about that which is happening with our current obsession in educational policy with “Grading Teachers by the Test” (see also my prior post about this article here; although you should give the article a full read; it’s well worth it). In short, though, Porter wrote about what economist’s often refer to as Goodhart’s Law, which states that “when a measure becomes the target, it can no longer be used as the measure.” This occurs given the great (e.g., high-stakes) value (mis)placed on any measure, and the distortion (i.e., in terms of artificial inflation or deflation, depending on the desired direction of the measure) that often-to-always comes about as a result.

Well, it’s happened again, this time in Miami-Dade, Florida, where the Miami-Dade district’s teachers are saying its now “getting harder to get a good evaluation” (see the full article here). Apparently, teachers evaluation scores, from last to this year, are being “dragged down,” primarily given teachers’ students’ performances on tests (as well as tests of subject areas that and students whom they do not teach).

“In the weeks after teacher evaluations for the 2015-16 school year were distributed, Miami-Dade teachers flooded social media with questions and complaints. Teachers reported similar stories of being evaluated based on test scores in subjects they don’t teach and not being able to get a clear explanation from school administrators. In dozens of Facebook posts, they described feeling confused, frustrated and worried. Teachers risk losing their jobs if they get a series of low evaluations, and some stand to gain pay raises and a bonus of up to $10,000 if they get top marks.”

As per the figure also included in this article, see the illustration of how this is occurring below; that is, how it is becoming more difficult for teachers to get “good” overall evaluation scores but also, and more importantly, how it is becoming more common for districts to simply set different cut scores to artificially increase teachers’ overall evaluation scores.

00-00 template_cs5

“Miami-Dade say the problems with the evaluation system have been exacerbated this year as the number of points needed to get the “highly effective” and “effective” ratings has continued to increase. While it took 85 points on a scale of 100 to be rated a highly effective teacher for the 2011-12 school year, for example, it now takes 90.4.”

This, as mentioned prior, is something called “artificial deflation,” whereas the quality of teaching is likely not changing nearly to the extent the data might illustrate it is. Rather, what is happening behind the scenes (e.g., the manipulation of cut scores) is giving the impression that indeed the overall teacher system is in fact becoming better, more rigorous, aligning with policymakers’ “higher standards,” etc).

This is something in the educational policy arena that we also call “symbolic policies,” whereas nothing really instrumental or material is happening, and everything else is a facade, concealing a less pleasant or creditable reality that nothing, in fact, has changed.

Citation: Gurney, K. (2016). Teachers say it’s getting harder to get a good evaluation. The school district disagrees. The Miami Herald. Retrieved from http://www.miamiherald.com/news/local/education/article119791683.html#storylink=cpy

Ohio Rejects Subpar VAM, for Another VAM Arguably Less Subpar?

From a prior post coming from Ohio (see here), you may recall that Ohio state legislators recently introduced a bill to review its state’s value-added model (VAM), especially as it pertains to the state’s use of their VAM (i.e., the Education Value-Added Assessment System (EVAAS); see more information about the use of this model in Ohio here).

As per an article published last week in The Columbus Dispatch, the Ohio Department of Education (ODE) apparently rejected a proposal made by the state’s pro-charter school Ohio Coalition for Quality Education and the state’s largest online charter school, all of whom wanted to add (or replace) this state’s VAM with another, unnamed “Similar Students” measure (which could be the Student Growth Percentiles model discussed prior on this blog, for example, here, here, and here) used in California.

The ODE charged that this measure “would lower expectations for students with different backgrounds, such as those in poverty,” which is not often a common criticism of this model (if I have the model correct), nor is it a common criticism of the model they already have in place. In fact, and again if I have the model correct, these are really the only two models that do not statistically control for potentially biasing factors (e.g., student demographic and other background factors) when calculating teachers’ value-added; hence, their arguments about this model may be in actuality no different than that which they are already doing. Hence, statements like that made by Chris Woolard, senior executive director of the ODE, are false: “At the end of the day, our system right now has high expectations for all students. This (California model) violates that basic principle that we want all students to be able to succeed.”

The models, again if I am correct, are very much the same. While indeed the California measurement might in fact consider “student demographics such as poverty, mobility, disability and limited-English learners,” this model (if I am correct on the model) does not statistically factor these variables out. If anything, the state’s EVAAS system does, even though EVAAS modelers claim they do not do this, by statistically controlling for students’ prior performance, which (unfortunately) has these demographics already built into them. In essence, they are already doing the same thing they now protest.

Indeed, as per a statement made by Ron Adler, president of the Ohio Coalition for Quality Education, not only is it “disappointing that ODE spends so much time denying that poverty and mobility of students impedes their ability to generate academic performance…they [continue to] remain absolutely silent about the state’s broken report card and continually defend their value-added model that offers no transparency and creates wild swings for schools across Ohio” (i.e., the EVAAS system, although in all fairness all VAMs and the SGP yield the “wild swings’ noted). See, for example, here.

What might be worse, though, is that the ODE apparently found that, depending on the variables used in the California model, it produced different results. Guess what! All VAMs, depending on the variables used, produce different results. In fact, using the same data and different VAMs for the same teachers at the same time also produce (in some cases grossly) different results. The bottom line here is if any thinks that any VAM is yielding estimates from which valid or “true” statements can be made are fooling themselves.

New Mexico: Holding Teachers Accountable for Missing More Than 3 Days of Work

One state that seems to still be going strong after the passage of last January’s Every Student Succeeds Act (ESSA) — via which the federal government removed (or significantly relaxed) its former mandates that all states adopt and use of growth and value-added models (VAMs) to hold their teachers accountable (see here) — is New Mexico.

This should be of no surprise to followers of this blog, especially those who have not only recognized the decline in posts via this blog post ESSA (see a post about this decline here), but also those who have noted that “New Mexico” is the state most often mentioned in said posts post ESSA (see for example here, here, and here).

Well, apparently now (and post  revisions likely caused by the ongoing lawsuit regarding New Mexico’s teacher evaluation system, of which attendance is/was a part; see for example here, here, and here), teachers are to now also be penalized if missing more than three days of work.

As per a recent article in the Santa Fe New Mexican (here), and the title of this article, these new teacher attendance regulations, as to be factored into teachers’ performance evaluations, has clearly caught schools “off guard.”

“The state has said that including attendance in performance reviews helps reduce teacher absences, which saves money for districts and increases students’ learning time.” In fact, effective this calendar year, 5 percent of a teacher’s evaluation is to be made up of teacher attendance. New Mexico Public Education Department spokesman Robert McEntyre clarified that “teachers can miss up to three days of work without being penalized.” He added that “Since attendance was first included in teacher evaluations, it’s estimated that New Mexico schools are collectively saving $3.5 million in costs for substitute teachers and adding 300,000 hours of instructional time back into [their] classrooms.”

“The new guidelines also do not dock teachers for absences covered by the federal Family and Medical Leave Act, or absences because of military duty, jury duty, bereavement, religious leave or professional development programs.” Reported to me only anecdotally (i.e., I could not find evidence of this elsewhere), the new guidelines might also dock teachers for engaging in professional development or overseeing extracurricular events such as debate team performances. If anybody has anything to add on this end, especially as evidence of this, please do comment below.

Value-Added for Kindergarten Teachers in Ecuador

In a study a colleague of mine recently sent me, authors of a study recently released in The Quarterly Journal of Economics and titled “Teacher Quality and Learning Outcomes in Kindergarten,” (nearly randomly) assigned two cohorts of more than 24,000 kindergarten students to teachers to examine whether, indeed and once again, teacher behaviors are related to growth in students’ test scores over time (i.e., value-added).

To assess this, researchers administered 12 tests to the Kindergarteners (I know) at the beginning and end of the year in mathematics and language arts (although apparently the 12 posttests only took 30-40 minutes to complete, which is a content validity and coverage issue in and of itself, p. 1424). They also assessed something they called the executive function (EF), and that they defined as children’s inhibitory control, working memory, capacity to pay attention, and cognitive flexibility, all of which they argue to be related to “Volumetric measures of prefrontal cortex size [when] predict[ed]” (p. 1424). This, along with the fact that teachers’ IQs were also measured (using the Spanish-speaking version of the Wechsler Adult Intelligence Scale) speaks directly to the researchers’ background theory and approach (e.g., recall our world’s history with craniometry, aptly captured in one of my favorite books — Stephen J. Gould’s best selling “The Mismeasure of Man”). Teachers were also observed using the Classroom Assessment Scoring System (CLASS), and parents were also solicited for their opinions about their children’s’ teachers (see other measures collected p. 1417-1418).

What should by now be some familiar names (e.g., Raj Chetty, Thomas Kane) served as collaborators on the study. Likewise, their works and the works of other likely familiar scholars and notorious value-added supporters (e.g., Eric Hanushek, Jonah Rockoff) are also cited throughout in support as evidence of “substantial research” (p. 1416) in support of value-added models (VAMs). Of course, this is unfortunate but important to point out in that this is an indicator of “researcher bias” in and of itself. For example, one of the authors’ findings really should come at no surprise: “Our results…complement estimates from [Thomas Kane’s Bill & Melinda Gates Measures of Effective Teaching] MET project” (p. 1419); although, the authors in a very interesting footnote (p. 1419) describe in more detail than I’ve seen elsewhere all of the weaknesses with the MET study in terms of its design, “substantial attrition,” “serious issue[s]” with contamination and compliance, and possibly/likely biased findings caused by self-selection given the extent to which teachers volunteered to be a part of the MET study.

Also very important to note is that this study took place in Ecuador. Apparently, “they,” including some of the key players in this area of research noted above, are moving their VAM-based efforts across international waters, perhaps in part given the Every Student Succeeds Act (ESSA) recently passed in the U.S., that we should all know by now dramatically curbed federal efforts akin to what is apparently going on now and being pushed here and in other developing countries (although the authors assert that Ecuador is a middle-income country, not a developing country, even though this categorization apparently only applies to the petroleum rich sections of the nation). Related, they assert that, “concerns about teacher quality are likely to be just as important in [other] developing countries” (p. 1416); hence, adopting VAMs in such countries might just be precisely what these countries need to “reform” their schools, as well.

Unfortunately, many big businesses and banks (e.g., the Inter-American Development Bank that funded this particular study) are becoming increasingly interested in investing in and solving these and other developing countries’ educational woes, as well, via measuring and holding teachers accountable for teacher-level value-added, regardless of the extent to which doing this has not worked in the U.S to improve much of anything. Needless to say, many who are involved with these developing nation initiatives, including some of those mentioned above, are also financially benefitting by continuing to serve others their proverbial Kool-Aid.

Nonetheless, their findings:

  • First, they “estimate teacher (rather than classroom) effects of 0.09 on language and math” (p. 1434). That is, just less than 1/10th of a standard deviation, or just over a 3% move in the positive direction away from the mean.
  • Similarly, the “estimate classroom effects of 0.07 standard deviation on EF” (p. 1433). That is, precisely 7/100th of a standard deviation, or about a 2% move in the positive direction away from the mean.
  • They found that “children assigned to teachers with a 1-standard deviation higher CLASS score have between 0.05 and 0.07 standard deviation higher end-of-year test scores” (p. 1437), or a 1-2% move in the positive direction away from the mean.
  • And they found that “that parents generally give higher scores to better teachers…parents are 15 percentage points more likely to classify a teacher who produces 1 standard deviation higher test scores as ‘‘very good’’ rather than ‘‘good’’ or lower” (p. 1442). This is quite an odd way of putting it, along with the assumption that the difference between “very good” and “good” is not arbitrary but empirically grounded, along with whatever reason a simple correlation was not more simply reported.
  • Their most major finding is that “a 1 standard deviation increase in classroom quality, corrected for sampling error, results in 0.11 standard deviation higher test scores in both language and math” (p. 1433; see also other findings from p. 1434-447).

Interestingly, the authors equivocate all of these effects to teacher or classroom “shocks,” although I’d hardly call them “shocks” that inherently imply a large, unidirectional, and causal impact. Moreover, this also implies how the authors, also as economists, still view this type of research (i.e., not correlational, even with close-to-random assignment, although they make a slight mention of this possibility on p. 1449).

Nonetheless, the authors conclude that in this article they effectively evidenced “that there are substantial differences [emphasis added] in the amount of learning that takes place in language, math, and executive function across kindergarten classrooms in Ecuador” (p. 1448). In addition, “These differences are associated with differences in teacher behaviors and practices,” as observed, and “that parents can generally tell better from worse teachers, but do not meaningfully alter their investments in children in response to random shocks [emphasis added] to teacher quality” (p. 1448).

Ultimately, they find that “value added is a useful summary measure of teacher quality in Ecuador” (p. 1448). Go figure…

They conclude “to date, no country in Latin America regularly calculates the value added of teachers,” yet “in virtually all countries in the region, decisions about tenure, in-service training, promotion, pay, and early retirement are taken with no regard for (and in most cases no knowledge about) a teacher’s effectiveness” (p. 1448). Also sound familiar??

“Value added is no silver bullet,” and indeed it is not as per much evidence now existent throughout the U.S., “but knowing which teachers produce more or less learning among equivalent students [is] an important step to designing policies to improve learning outcomes” (p. 1448), they also recognizably argue.

Citation: Araujo, M. C., Carneiro, P.,  Cruz-Aguayo, Y., & Schady, N. (2016). Teacher quality and learning outcomes in Kindergarten. The Quarterly Journal of Economics, 1415–1453. doi:10.1093/qje/qjw016  Retrieved from http://qje.oxfordjournals.org/content/131/3/1415.abstract