The New York Times on “The Little Known Statistician” Who Passed

As many of you may recall, I wrote a post last March about the passing of William L. Sanders at age 74. Sanders developed the Education Value-Added Assessment System (EVAAS) — the value-added model (VAM) on which I have conducted most of my research (see, for example, here and here) and the VAM at the core of most of the teacher evaluation lawsuits in which I have been (or still am) engaged (see here, here, and here).

Over the weekend, though, The New York Times released a similar piece about Sanders’s passing, titled “The Little-Known Statistician Who Taught Us to Measure Teachers.” Because I had multiple colleagues and blog followers email me (or email me about) this article, I thought I would share it out with all of you, with some additional comments, of course, but also given the comments I already made in my prior post here.

First, I will start by saying that the title of this article is misleading in that what this “little-known” statistician contributed to the field of education was hardly “little” in terms of its size and impact. Rather, Sanders and his associates at SAS Institute Inc. greatly influenced our nation in terms of the last decade of our nation’s educational policies, as largely bent on high-stakes teacher accountability for educational reform. This occurred in large part due to Sanders’s (and others’) lobbying efforts when the federal government ultimately choose to incentivize and de facto require that all states hold their teachers accountable for their value-added, or lack thereof, while attaching high-stakes consequences (e.g., teacher termination) to teachers’ value-added estimates. This, of course, was to ensure educational reform. This occurred at the federal level, as we all likely know, primarily via Race to the Top and the No Child Left Behind Waivers essentially forced upon states when states had to adopt VAMs (or growth models) to also reform their teachers, and subsequently their schools, in order to continue to receive the federal funds upon which all states still rely.

It should be noted, though, that we as a nation have been relying upon similar high-stakes educational policies since the late 1970s (i.e., for now over 35 years); however, we have literally no research evidence that these high-stakes accountability policies have yielded any of their intended effects, as still perpetually conceptualized (see, for example, Nevada’s recent legislative ruling here) and as still advanced via large- and small-scale educational policies (e.g., we are still A Nation At Risk in terms of our global competitiveness). Yet, we continue to rely on the logic in support of such “carrot and stick” educational policies, even with this last decade’s teacher- versus student-level “spin.” We as a nation could really not be more ahistorical in terms of our educational policies in this regard.

Regardless, Sanders contributed to all of this at the federal level (that also trickled down to the state level) while also actively selling his VAM to state governments as well as local school districts (i.e., including the Houston Independent School District in which teacher plaintiffs just won a recent court ruling against the Sanders value-added system here), and Sanders did this using sets of (seriously) false marketing claims (e.g., purchasing and using the EVAAS will help “clear [a] path to achieving the US goal of leading the world in college completion by the year 2020”). To see two empirical articles about the claims made to sell Sanders’s EVAAS system, the research non-existent in support of each of the claims, and the realities of those at the receiving ends of this system (i.e., teachers) as per their experiences with each of the claims, see here and here.

Hence, to assert that what this “little known” statistician contributed to education was trivial or inconsequential is entirely false. Thankfully, with the passage of the Every Student Succeeds Act” (ESSA) the federal government came around, in at least some ways. While not yet acknowledging how holding teachers accountable for their students’ test scores, while ideal, simply does not work (see the “Top Ten” reasons why this does not work here), at least the federal government has given back to the states the authority to devise, hopefully, some more research-informed educational policies in these regards (I know….).

Nonetheless, may he rest in peace (see also here), perhaps also knowing that his forever stance of “[making] no apologies for the fact that his methods were too complex for most of the teachers whose jobs depended on them to understand,” just landed his EVAAS in serious jeopardy in court in Houston (see here) given this stance was just ruled as contributing to the violation of teachers’ Fourteenth Amendment rights (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process [emphasis added]).

Also Last Thursday in Nevada: The “Top Ten” Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers

Last Thursday was a BIG day in terms of value-added models (VAMs). For those of you who missed it, US Magistrate Judge Smith ruled — in Houston Federation of Teachers (HFT) et al. v. Houston Independent School District (HISD) — that Houston teacher plaintiffs’ have legitimate claims regarding how their EVAAS value-added estimates, as used (and abused) in HISD, was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process). See post here: “A Big Victory in Court in Houston.” On the same day, “we” won another court case — Texas State Teachers Association v. Texas Education Agency —  on which The Honorable Lora J. Livingston ruled that the state was to remove all student growth requirements from all state-level teacher evaluation systems. In other words, and in the name of increased local control, teachers throughout Texas will no longer be required to be evaluated using their students’ test scores. See prior post here: “Another Big Victory in Court in Texas.”

Also last Thursday (it was a BIG day, like I said), I testified, again, regarding a similar provision (hopefully) being passed in the state of Nevada. As per a prior post here, Nevada’s “Democratic lawmakers are trying to eliminate — or at least reduce — the role [students’] standardized tests play in evaluations of teachers, saying educators are being unfairly judged on factors outside of their control.” More specifically, as per AB320 the state would eliminate statewide, standardized test results as a mandated teacher evaluation measure but allow local assessments to account for 20% of a teacher’s total evaluation. AB320 is still in work session. It has the votes in committee and on the floor, thus far.

The National Center on Teacher Quality (NCTQ), unsurprisingly (see here and here), submitted (unsurprising) testimony against AB320 that can be read here, and I submitted testimony (I think, quite effectively 😉 ) refuting their “research-based” testimony, and also making explicit what I termed “The “Top Ten” Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers” here. I have also pasted my submission below, in case anybody wants to forward/share any of my main points with others, especially others in similar positions looking to impact state or local educational policies in similar ways.

*****

May 4, 2017

Dear Assemblywoman Miller:

Re: The “Top Ten” Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers

While I understand that the National Council on Teacher Quality (NCTQ) submitted a letter expressing their opposition against Assembly Bill (AB) 320, it should be officially noted that, counter to that which the NCTQ wrote into its “research-based” letter,[1] the American Statistical Association (ASA), the American Educational Research Association (AERA), the National Academy of Education (NAE), and other large-scale, highly esteemed, professional educational and educational research/measurement associations disagree with the assertions the NCTQ put forth. Indeed, the NCTQ is not a nonpartisan research and policy organization as claimed, but one of only a small handful of partisan operations still in existence and still pushing forward what is increasingly becoming dismissed as America’s ideal teacher evaluation systems (e.g., announced today, Texas dropped their policy requirement that standardized test scores be used to evaluate teachers; Connecticut moved in the same policy direction last month).

Accordingly, these aforementioned and highly esteemed organizations have all released statements cautioning all against the use of students’ large-scale, state-level standardized tests to evaluate teachers, primarily, for the following research-based reasons, that I have limited to ten for obvious purposes:

  1. The ASA evidenced that teacher effects correlate with only 1-14% of the variance in their students’ large-scale standardized test scores. This means that the other 86%-99% of the variance is due to factors outside of any teacher’s control (e.g., out-of-school and student-level variables). That teachers’ effects, as measured by large-scaled standardized tests (and not including other teacher effects that cannot be measured using large-scaled standardized tests), account for such little variance makes using them to evaluate teachers wholly irrational and unreasonable.
  1. Large-scale standardized tests have always been, and continue to be, developed to assess levels of student achievement, but not levels of growth in achievement over time, and definitely not growth in achievement that can be attributed back to a teacher (i.e., in terms of his/her effects). Put differently, these tests were never designed to estimate teachers’ effects; hence, using them in this regard is also psychometrically invalid and indefensible.
  1. Large-scale standardized tests, when used to evaluate teachers, often yield unreliable or inconsistent results. Teachers who should be (more or less) consistently effective are, accordingly, being classified in sometimes highly inconsistent ways year-to-year. As per the current research, a teacher evaluated using large-scale standardized test scores as effective one year has a 25% to 65% chance of being classified as ineffective the following year(s), and vice versa. This makes the probability of a teacher being identified as effective, as based on students’ large-scale test scores, no different than the flip of a coin (i.e., random).
  1. The estimates derived via teachers’ students’ large-scale standardized test scores are also invalid. Very limited evidence exists to support that teachers whose students’ yield high- large-scale standardized tests scores are also effective using at least one other correlated criterion (e.g., teacher observational scores, student satisfaction survey data), and vice versa. That these “multiple measures” don’t map onto each other, also given the error prevalent in all of the “multiple measures” being used, decreases the degree to which all measures, students’ test scores included, can yield valid inferences about teachers’ effects.
  1. Large-scale standardized tests are often biased when used to measure teachers’ purported effects over time. More specifically, test-based estimates for teachers who teach inordinate proportions of English Language Learners (ELLs), special education students, students who receive free or reduced lunches, students retained in grade, and gifted students are often evaluated not as per their true effects but group effects that bias their estimates upwards or downwards given these mediating factors. The same thing holds true with teachers who teach English/language arts versus mathematics, in that mathematics teachers typically yield more positive test-based effects (which defies logic and commonsense).
  1. Related, large-scale standardized tests estimates are fraught with measurement errors that negate their usefulness. These errors are caused by inordinate amounts of inaccurate and missing data that cannot be replaced or disregarded; student variables that cannot be statistically “controlled for;” current and prior teachers’ effects on the same tests that also prevent their use for making determinations about single teachers’ effects; and the like.
  1. Using large-scale standardized tests to evaluate teachers is unfair. Issues of fairness arise when these test-based indicators impact some teachers more than others, sometimes in consequential ways. Typically, as is true across the nation, only teachers of mathematics and English/language arts in certain grade levels (e.g., grades 3-8 and once in high school) can be measured or held accountable using students’ large-scale test scores. Across the nation, this leaves approximately 60-70% of teachers as test-based ineligible.
  1. Large-scale standardized test-based estimates are typically of very little formative or instructional value. Related, no research to date evidences that using tests for said purposes has improved teachers’ instruction or student achievement as a result. As per UCLA Professor Emeritus James Popham: The farther the test moves away from the classroom level (e.g., a test developed and used at the state level) the worst the test gets in terms of its instructional value and its potential to help promote change within teachers’ classrooms.
  1. Large-scale standardized test scores are being used inappropriately to make consequential decisions, although they do not have the reliability, validity, fairness, etc. to satisfy that for which they are increasingly being used, especially at the teacher-level. This is becoming increasingly recognized by US court systems as well (e.g., in New York and New Mexico).
  1. The unintended consequences of such test score use for teacher evaluation purposes are continuously going unrecognized (e.g., by states that pass such policies, and that states should acknowledge in advance of adapting such policies), given research has evidenced, for example, that teachers are choosing not to teach certain types of students whom they deem as the most likely to hinder their potentials positive effects. Principals are also stacking teachers’ classes to make sure certain teachers are more likely to demonstrate positive effects, or vice versa, to protect or penalize certain teachers, respectively. Teachers are leaving/refusing assignments to grades in which test-based estimates matter most, and some are leaving teaching altogether out of discontent or in professional protest.

[1] Note that the two studies the NCTQ used to substantiate their “research-based” letter would not support the claims included. For example, their statement that “According to the best-available research, teacher evaluation systems that assign between 33 and 50 percent of the available weight to student growth ‘achieve more consistency, avoid the risk of encouraging too narrow a focus on any one aspect of teaching, and can support a broader range of learning objectives than measured by a single test’ is false. First, the actual “best-available” research comes from over 10 years of peer-reviewed publications on this topic, including over 500 peer-reviewed articles. Second, what the authors of the Measures of Effective Teaching (MET) Studies found was that the percentages to be assigned to student test scores were arbitrary at best, because their attempts to empirically determine such a percentage failed. This face the authors also made explicit in their report; that is, they also noted that the percentages they suggested were not empirically supported.

Breaking News: Another Big Victory in Court in Texas

Earlier today I released a post regarding “A Big Victory in Court in Houston,” in which I wrote about how, yesterday, US Magistrate Judge Smith ruled — in Houston Federation of Teachers et al. v. Houston Independent School District — that Houston teacher plaintiffs’ have legitimate claims regarding how their Education Value-Added Assessment System (EVAAS) value-added scores, as used (and abused) in HISD, was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process). Hence, on this charge, this case is officially going to trial.

Well, also yesterday, “we” won another court case on which I also served as an expert witness (I served as an expert witness on behalf of the plaintiffs alongside Jesse Rothstein in the court case noted above). As per this case — Texas State Teachers Association v. Texas Education Agency, Mike Morath in his Official Capacity as Commissioner of Education for the State of Texas (although there were three similar cases also filed – see all four referenced below) — The Honorable Lora J. Livingston ruled that the Defendants are to make revisions to 19 Tex. Admin. Code § 150.1001 that most notably include the removal of (A) student learning objectives [SLOs], (B) student portfolios, (C) pre and post test results on district level assessments; or (D) value added data based on student state assessment results. In addition, “The rules do not restrict additional factors a school district may consider…,” and “Under the local appraisal system, there [will be] no required weighting for each measure…,” although districts can chose to weight whatever measures they might choose. “Districts can also adopt an appraisal system that does not provide a single, overall summative rating.” That is, increased local control.

If the Texas Education Agency (TEA) does not adopt the regulations put forth by the court by next October, this case will continue. This does not look likely, however, in that as per a news article released today, here, Texas “Commissioner of Education Mike Morath…agreed to revise the [states’] rules in exchange for the four [below] teacher groups’ suspending their legal challenges.” As noted prior, the terms of this settlement call for the removal of the above-mentioned, state-required, four growth measures when evaluating teachers.

This was also highlighted in a news article, released yesterday, here, with this one more generally about how teachers throughout Texas will no longer be evaluated using their students’ test scores, again, as required by the state.

At the crux of this case, as also highlighted in this particular piece, and to which I testified (quite extensively), was that the value-added measures formerly required/suggested by the state did not constitute teachers’ “observable,” job-related behaviors. See also a prior post about this case here.

*****

Cases Contributing to this Ruling:

1. Texas State Teachers Association v. Texas Education Agency, Mike Morath, in his Official Capacity as Commissioner of Education for the State of Texas; in the 345th Judicial District Court, Travis County, Texas

2. Texas Classroom Teachers Association v. Mike Morath, Texas Commissioner of Education; in the 419th Judicial District Court, Travis County, Texas

3. Texas American Federation of Teachers v. Mike Morath, Commissioner of Education, in his official capacity, and Texas Education Agency; in the 201st Judicial District Court, Travis County, Texas

4. Association of Texas Professional Educators v. Mike Morath, the Commissioner of Education and the Texas Education Agency; in the 200th District Court of Travis County, Texas.

Breaking News: A Big Victory in Court in Houston

Recall from multiple prior posts (see here, here, here, and here) that a set of teachers in the Houston Independent School District (HISD), with the support of the Houston Federation of Teachers (HFT) and the American Federation of Teachers (AFT), took their district to federal court to fight against the (mis)use of their value-added scores, derived via the Education Value-Added Assessment System (EVAAS) — the “original” value-added model (VAM) developed in Tennessee by William L. Sanders who just recently passed away (see here). Teachers’ EVAAS scores, in short, were being used to evaluate teachers in Houston in more consequential ways than anywhere else in the nation (e.g., the termination of 221 teachers in just one year as based, primarily, on their EVAAS scores).

The case — Houston Federation of Teachers et al. v. Houston ISD — was filed in 2014 and just yesterday, United States Magistrate Judge Stephen Wm. Smith denied in the United States District Court, Southern District of Texas, the district’s request for summary judgment given the plaintiffs’ due process claims. Put differently, Judge Smith ruled that the plaintiffs’ did have legitimate claims regarding how EVAAS use in HISD was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process). Hence, on this charge, this case is officially going to trial.

This is a huge victory, and one unprecedented that will likely set precedent, trial pending, for others, and more specifically other teachers.

Of primary issue will be the following (as taken from Judge Smith’s Summary Judgment released yesterday): “Plaintiffs [will continue to] challenge the use of EVAAS under various aspects of the Fourteenth Amendment, including: (1) procedural due process, due to lack of sufficient information to meaningfully challenge terminations based on low EVAAS scores,” and given “due process is designed to foster government decision-making that is both fair and accurate.”

Related, and of most importance, as also taken directly from Judge Smith’s Summary, he wrote:

  • HISD’s value-added appraisal system poses a realistic threat to deprive plaintiffs of constitutionally protected property interests in employment.
  • HISD does not itself calculate the EVAAS score for any of its teachers. Instead, that task is delegated to its third party vendor, SAS. The scores are generated by complex algorithms, employing “sophisticated software and many layers of calculations.” SAS treats these algorithms and software as trade secrets, refusing to divulge them to either HISD or the teachers themselves. HISD has admitted that it does not itself verify or audit the EVAAS scores received from SAS, nor does it engage any contractor to do so. HISD further concedes that any effort by teachers to replicate their own scores, with the limited information available to them, will necessarily fail. This has been confirmed by plaintiffs’ expert, who was unable to replicate the scores despite being given far greater access to the underlying computer codes than is available to an individual teacher [emphasis added, as also related to a prior post about how SAS claimed that plaintiffs violated SAS’s protective order (protecting its trade secrets), that the court overruled, see here].
  • The EVAAS score might be erroneously calculated for any number of reasons, ranging from data-entry mistakes to glitches in the computer code itself. Algorithms are human creations, and subject to error like any other human endeavor. HISD has acknowledged that mistakes can occur in calculating a teacher’s EVAAS score; moreover, even when a mistake is found in a particular teacher’s score, it will not be promptly corrected. As HISD candidly explained in response to a frequently asked question, “Why can’t my value-added analysis be recalculated?”:
    • Once completed, any re-analysis can only occur at the system level. What this means is that if we change information for one teacher, we would have to re- run the analysis for the entire district, which has two effects: one, this would be very costly for the district, as the analysis itself would have to be paid for again; and two, this re-analysis has the potential to change all other teachers’ reports.
  • The remarkable thing about this passage is not simply that cost considerations trump accuracy in teacher evaluations, troubling as that might be. Of greater concern is the house-of-cards fragility of the EVAAS system, where the wrong score of a single teacher could alter the scores of every other teacher in the district. This interconnectivity means that the accuracy of one score hinges upon the accuracy of all. Thus, without access to data supporting all teacher scores, any teacher facing discharge for a low value-added score will necessarily be unable to verify that her own score is error-free.
  • HISD’s own discovery responses and witnesses concede that an HISD teacher is unable to verify or replicate his EVAAS score based on the limited information provided by HISD.
  • According to the unrebutted testimony of plaintiffs’ expert, without access to SAS’s proprietary information – the value-added equations, computer source codes, decision rules, and assumptions – EVAAS scores will remain a mysterious “black box,” impervious to challenge.
  • While conceding that a teacher’s EVAAS score cannot be independently verified, HISD argues that the Constitution does not require the ability to replicate EVAAS scores “down to the last decimal point.” But EVAAS scores are calculated to the second decimal place, so an error as small as one hundredth of a point could spell the difference between a positive or negative EVAAS effectiveness rating, with serious consequences for the affected teacher.

Hence, “When a public agency adopts a policy of making high stakes employment decisions based on secret algorithms incompatible with minimum due process, the proper remedy is to overturn the policy.”

Moreover, he wrote, that all of this is part of the violation of teaches’ Fourteenth Amendment rights. Hence, he also wrote, “On this summary judgment record, HISD teachers have no meaningful way to ensure correct calculation of their EVAAS scores, and as a result are unfairly subject to mistaken deprivation of constitutionally protected property interests in their jobs.”

Otherwise, Judge Smith granted summary judgment to the district on the other claims forwarded by the plaintiffs, including plaintiffs’ equal protection claims. All of us involved in the case — recall that Jesse Rothstein and I served as the expert witnesses on behalf of the plaintiffs, and Thomas Kane of the Measures of Effective Teaching (MET) Project and John Friedman of the infamous Chetty et al. studies (see here and here) served as the expert witnesses on behalf of the defendants — knew that all of the plaintiffs’ claims would be tough to win given all of the constitutional legal standards would be difficult for plaintiffs to satisfy (e.g., that evaluating teachers using their value-added scores was not “unreasonable” was difficult to prove, as it was in the Tennessee case we also fought and was then dismissed on similar grounds (see here)).

Nonetheless, that “we” survived on the due process claim is fantastic, especially as this is the first case like this of which we are aware across the country.

Here is the press release, released last night by the AFT:

May 4, 2017 – AFT, Houston Federation of Teachers Hail Court Ruling on Flawed Evaluation System

Statements by American Federation of Teachers President Randi Weingarten and Houston Federation of Teachers President Zeph Capo on U.S. District Court decision on Houston’s Evaluation Value-Added Assessment System (EVAAS), known elsewhere as VAM or value-added measures:

AFT President Randi Weingarten: “Houston developed an incomprehensible, unfair and secret algorithm to evaluate teachers that had no rational meaning. This is the algebraic formula: = + (Σ∗≤Σ∗∗ × ∗∗∗∗=1)+

“U.S. Magistrate Judge Stephen Smith saw that it was seriously flawed and posed a threat to teachers’ employment rights; he rejected it. This is a huge victory for Houston teachers, their students and educators’ deeply held contention that VAM is a sham.

“The judge said teachers had no way to ensure that EVAAS was correctly calculating their performance score, nor was there a way to promptly correct a mistake. Judge Smith added that the proper remedy is to overturn the policy; we wholeheartedly agree. Teaching must be about helping kids develop the skills and knowledge they need to be prepared for college, career and life—not be about focusing on test scores for punitive purposes.”

HFT President Zeph Capo: “With this decision, Houston should wipe clean the record of every teacher who was negatively evaluated. From here on, teacher evaluation systems should be developed with educators to ensure that they are fair, transparent and help inform instruction, not be used as a punitive tool.”

The Tripod Student Survey Instrument: Its Factor Structure and Value-Added Correlations

The Tripod student perception survey instrument is a “research-based” instrument increasingly being used by states to add to state’s teacher evaluation systems as based on “multiple measures.” While there are other instruments also in use, as well as student survey instruments being developed by states and local districts, this one in particular is gaining in popularity, also in that it was used throughout the Bill & Melinda Gates Foundation’s ($43 million worth of) Measures of Effective Teaching (MET) studies. A current estimate (as per the study discussed in this post) is that during the 2015–2016 school year approximately 1,400 schools purchased and administered the Tripod. See also a prior post (here) about this instrument, or more specifically a chapter of a book about the instrument as authored by the instrument’s developer and lead researcher in a  research surrounding it – Ronald Ferguson.

In a study recently released in the esteemed American Educational Research Journal (AERJ), and titled “What Can Student Perception Surveys Tell Us About Teaching? Empirically Testing the Underlying Structure of the Tripod Student Perception Survey,” researchers found that the Tripod’s factor structure did not “hold up.” That is, Tripod’s 7Cs (i.e., seven constructs including: Care, Confer, Captivate, Clarify, Consolidate, Challenge, Classroom Management; see more information about the 7Cs here) and the 36 items that are positioned within each of the 7Cs did not fit the 7C framework as theorized by instrument developer(s).

Rather, using the MET database (N=1,049 middle school math class sections; N=25,423 students), researchers found that an alternative bi-factor structure (i.e., two versus seven constructs) best fit the Tripod items theoretically positioned otherwise. These two factors included (1) a general responsivity dimension that includes all items (more or less) unrelated to (2) a classroom management dimension that governs responses on items surrounding teachers’ classroom management. Researchers were unable to to distinguish across items seven separate dimensions.

Researchers also found that the two alternative factors noted — general responsivity and classroom management — were positively associated with teacher value-added scores. More specifically, results suggested that these two factors were positively and statistically significantly associated with teachers’ value-added measures based on state mathematics tests (standardized coefficients were .25 and .25, respectively), although for undisclosed reasons, results apparently suggested nothing about these two factors’ (cor)relationships with value-added estimates base on state English/language arts (ELA) tests. As per authors’ findings in the area of mathematics, prior researchers have also found low to moderate agreement between teacher ratings and student perception ratings; hence, this particular finding simply adds another source of convergent evidence.

Authors do give multiple reasons and plausible explanations as to why they found what they did that you all can read in more depth via the full article, linked to above and fully cited below. Authors also note that “It is unclear whether the original 7Cs that describe the Tripod instrument were intended to capture seven distinct dimensions on which students can reliably discriminate among teachers or whether the 7Cs were merely intended to be more heuristic domains that map out important aspects of teaching” (p. 1859); hence, this is also important to keep in mind given study findings.

As per study authors, and to their knowledge, “this study [was] the first to systematically investigate the multidimensionality of the Tripod student perception survey” (p. 1863).

Citation: Wallace, T. L., Kelcey, B., &  Ruzek, E. (2016). What can student perception surveys tell us about teaching? Empirically testing the underlying structure of the Tripod student perception survey.  American Educational Research Journal, 53(6), 1834–1868.
doiI:10.3102/0002831216671864 Retrieved from http://journals.sagepub.com/doi/pdf/10.3102/0002831216671864

New Texas Lawsuit: VAM-Based Estimates as Indicators of Teachers’ “Observable” Behaviors

Last week I spent a few days in Austin, one day during which I provided expert testimony for a new state-level lawsuit that has the potential to impact teachers throughout Texas. The lawsuit — Texas State Teachers Association (TSTA) v. Texas Education Agency (TEA), Mike Morath in his Official Capacity as Commissioner of Education for the State of Texas.

The key issue is that, as per the state’s Texas Education Code (Sec. § 21.351, see here) regarding teachers’ “Recommended Appraisal Process and Performance Criteria,” The Commissioner of Education must adopt “a recommended teacher appraisal process and criteria on which to appraise the performance of teachers. The criteria must be based on observable, job-related behavior, including: (1) teachers’ implementation of discipline management procedures; and (2) the performance of teachers’ students.” As for the latter, the State/TEA/Commissioner defined, as per its Texas Administrative Code (T.A.C., Chapter 15, Sub-Chapter AA, §150.1001, see here), that teacher-level value-added measures should be treated as one of the four measures of “(2) the performance of teachers’ students;” that is, one of the four measures recognized by the State/TEA/Commissioner as an “observable” indicator of a teacher’s “job-related” performance.

While currently no district throughout the State of Texas is required to use a value-added component to assess and evaluate its teachers, as noted, the value-added component is listed as one of four measures from which districts must choose at least one. All options listed in the category of “observable” indicators include: (A) student learning objectives (SLOs); (B) student portfolios; (C) pre- and post-test results on district-level assessments; and (D) value-added data based on student state assessment results.

Related, the state has not recommended or required that any district, if the value-added option is selected, to choose any particular value-added model (VAM) or calculation approach. Nor has it recommended or required that any district adopt any consequences as attached to these output; however, things like teacher contract renewal and sharing teachers’ prior appraisals with other districts in which teachers might be applying for new jobs is not discouraged. Again, though, the main issue here (and the key points to which I testified) was that the value-added component is listed as an “observable” and “job-related” teacher effectiveness indicator as per the state’s administrative code.

Accordingly, my (5 hour) testimony was primarily (albeit among many other things including the “job-related” part) about how teacher-level value-added data do not yield anything that is observable in terms of teachers’ effects. Likewise, officially referring to these data in this way is entirely false, in fact, in that:

  • “We” cannot directly observe a teacher “adding” (or detracting) value (e.g., with our own eyes, like supervisors can when they conduct observations of teachers in practice);
  • Using students’ test scores to measure student growth upwards (or downwards) and over time, as is very common practice using the (very often instructionally insensitive) state-level tests required by No Child Left Behind (NCLB), and doing this once per year in mathematics and reading/language arts (that includes prior and other current teachers’ effects, summer learning gains and decay, etc.), is not valid practice. That is, doing this has not been validated by the scholarly/testing community; and
  • Worse and less valid is to thereafter aggregate this student-level growth to the teacher level and then call whatever “growth” (or the lack thereof) is because of something the teacher (and really only the teacher did), as directly “observable.” These data are far from assessing a teacher’s causal or “observable” impacts on his/her students’ learning and achievement over time. See, for example, the prior statement released about value-added data use in this regard by the American Statistical Association (ASA) here. In this statement it is written that: “Research on VAMs has been fairly consistent that aspects of educational effectiveness that are measurable and within teacher control represent a small part of the total variation [emphasis added to note that this is variation explained which = correlational versus causal research] in student test scores or growth; most estimates in the literature attribute between 1% and 14% of the total variability [emphasis added] to teachers. This is not saying that teachers have little effect on students, but that variation among teachers [emphasis added] accounts for a small part of the variation [emphasis added] in [said test] scores. The majority of the variation in [said] test scores is [inversely, 86%-99% related] to factors outside of the teacher’s control such as student and family background, poverty, curriculum, and unmeasured influences.”

If any of you have anything to add to this, please do so in the comments section of this post. Otherwise, I will keep you posted on how this goes. My current understanding is that this one will be headed to court.

New Article Published on Using Value-Added Data to Evaluate Teacher Education Programs

A former colleague, a current PhD student, and I just had an article released about using value-added data to (or rather not to) evaluate teacher education/preparation, higher education programs. The article is titled “An Elusive Policy Imperative: Data and Methodological Challenges When Using Growth in Student Achievement to Evaluate Teacher Education Programs’ ‘Value-Added,” and the abstract of the article is included below.

If there is anyone out there who might be interested in this topic, please note that the journal in which this piece was published (online first and to be published in its paper version later) – Teaching Education – has made the article free for its first 50 visitors. Hence, I thought I’d share this with you all first.

If you’re interested, do access the full piece here.

Happy reading…and here’s the abstract:

In this study researchers examined the effectiveness of one of the largest teacher education programs located within the largest research-intensive universities within the US. They did this using a value-added model as per current federal educational policy imperatives to assess the measurable effects of teacher education programs on their teacher graduates’ students’ learning and achievement as compared to other teacher education programs. Correlational and group comparisons revealed little to no relationship between value-added scores and teacher education program regardless of subject area or position on the value-added scale. These findings are discussed within the context of several very important data and methodological challenges researchers also made transparent, as also likely common across many efforts to evaluate teacher education programs using value-added approaches. Such transparency and clarity might assist in the creation of more informed value-added practices (and more informed educational policies) surrounding teacher education accountability.

Difficulties When Combining Multiple Teacher Evaluation Measures

A new study about multiple “Approaches for Combining Multiple Measures of Teacher Performance,” with special attention paid to reliability, validity, and policy, was recently published in the American Educational Research Association (AERA) sponsored and highly-esteemed Educational Evaluation and Policy Analysis journal. You can find the free and full version of this study here.

In this study authors José Felipe Martínez – Associate Professor at the University of California, Los Angeles, Jonathan Schweig – at the RAND Corporation, and Pete Goldschmidt – Associate Professor at California State University, Northridge and creator of the value-added model (VAM) at legal issue in the state of New Mexico (see, for example, here), set out to help practitioners “combine multiple measures of complex [teacher evaluation] constructs into composite indicators of performance…[using]…various conjunctive, disjunctive (or complementary), and weighted (or compensatory) models” (p. 738). Multiple measures in this study include teachers’ VAM estimates, observational scores, and student survey results.

While authors ultimately suggest that “[a]ccuracy and consistency are greatest if composites are constructed to maximize reliability,” perhaps more importantly, especially for practitioners, authors note that “accuracy varies across models and cut-scores and that models with similar accuracy may yield different teacher classifications.”

This, of course, has huge implications for teacher evaluation systems as based upon multiple measures in that “accuracy” means “validity” and “valid” decisions cannot be made as based on “invalid” or “inaccurate” data that can so arbitrarily change. In other words, what this means is that likely never will a decision about a teacher being this or that actually mean this or that. In fact, this or that might be close, not so close, or entirely wrong, which is a pretty big deal when the measures combined are assumed to function otherwise. This is especially interesting, again and as stated prior, that the third author on this piece – Pete Goldschmidt – is the person consulting with the state of New Mexico. Again, this is the state that is still trying to move forward with the attachment of consequences to teachers’ multiple evaluation measures, as assumed (by the state but not the state’s consultant?) to be accurate and correct (see, for example, here).

Indeed, this is a highly inexact and imperfect social science.

Authors also found that “policy weights yield[ed] more reliable composites than optimal prediction [i.e., empirical] weights” (p. 750). In addition, “[e]mpirically derived weights may or may not align with important theoretical and policy rationales” (p. 750); hence, the authors collectively referred others to use theory and policy when combining measures, while also noting that doing so would (a) still yield overall estimates that would “change from year to year as new crops of teachers and potentially measures are incorporated” (p. 750) and (b) likely “produce divergent inferences and judgments about individual teachers (p. 751). Authors, therefore, concluded that “this in turn highlights the need for a stricter measurement validity framework guiding the development, use, and monitoring of teacher evaluation systems” (p. 751), given all of this also makes the social science arbitrary, which is also a legal issue in and of itself, as also quasi noted.

Now, while I will admit that those who are (perhaps unwisely) devoted to the (in many ways forced) combining of these measures (despite what low reliability indicators already mean for validity, as unaddressed in this piece) might find some value in this piece (e.g., how conjunctive and disjunctive models vary, how principal component, unit weight, policy weight, optimal prediction approaches vary), I will also note that forcing the fit of such multiple measures in such ways, especially without a thorough background in and understanding of reliability and validity and what reliability means for validity (i.e., with rather high levels of reliability required before any valid inferences and especially high-stakes decisions can be made) is certainly unwise.

If high-stakes decisions are not to be attached, such nettlesome (but still necessary) educational measurement issues are of less importance. But any positive (e.g., merit pay) or negative (e.g., performance improvement plan) consequence that comes about without adequate reliability and validity should certainly cause pause, if not a justifiable grievance as based on the evidence provided herein, called for herein, and required pretty much every time such a decision is to be made (and before it is made).

Citation: Martinez, J. F., Schweig, J., & Goldschmidt, P. (2016). Approaches for combining multiple measures of teacher performance: Reliability, validity, and implications for evaluation policy. Educational Evaluation and Policy Analysis, 38(4), 738–756. doi: 10.3102/0162373716666166 Retrieved from http://journals.sagepub.com/doi/pdf/10.3102/0162373716666166

Note: New Mexico’s data were not used for analytical purposes in this study, unless any districts in New Mexico participated in the Bill & Melinda Gates Foundation’s Measures of Effective Teaching (MET) study yielding the data used for analytical purposes herein.

NCTQ on States’ Teacher Evaluation Systems’ Failures

The controversial National Council on Teacher Quality (NCTQ) — created by the conservative Thomas B. Fordham Institute and funded (in part) by the Bill & Melinda Gates Foundation as “part of a coalition for ‘a better orchestrated agenda’ for accountability, choice, and using test scores to drive the evaluation of teachers” (see here; see also other instances of controversy here and here) — recently issued yet another report about state’s teacher evaluation systems titled: “Running in Place: How New Teacher Evaluations Fail to Live Up to Promises.” See a related blog post in Education Week about this report here. See also a related blog post about NCTQ’s prior large-scale (and also slanted) study — “State of the States 2015: Evaluating Teaching, Leading and Learning” — here. Like I did in that post, I summarize this study below.

From the abstract: Authors of this report find that “within the 30 states that [still] require student learning measures to be at least a significant factor in teacher evaluations, state guidance and rules in most states allow teachers to be rated effective even if they receive low scores on the student learning component of the evaluation.” They add in the full report that in many states “a high score on an evaluation’s observation and [other] non-student growth components [can] result in a teacher earning near or at the minimum number of points needed to earn an effective rating. As a result, a low score on the student growth component of the evaluation is sufficient in several states to push a teacher over the minimum number of points needed to earn a summative effective rating. This essentially diminishes any real influence the student growth component has on the summative evaluation rating” (p. 3-4).

The first assumption surrounding the authors’ main tenets they make explicit: that “[u]nfortunately, [the] policy transformation [that began with the publication of the “Widget Effect” report in 2009] has not resulted in drastic alterations in outcomes” (p. 2). This is because, “[in] effect…states have been running in place” (p. 2) and not using teachers’ primarily test-based indicators for high-stakes decision-making. Hence, “evaluation results continue to look much like they did…back in 2009” (p. 2). The authors then, albeit ahistorically, ask, “How could so much effort to change state laws result in so little actual change?” (p. 2). Yet they don’t realize (or care to realize) that this is because we have almost 40 years of evidence that really any type of test-based, educational accountability policies and initiatives have never yield their intended consequences (i.e., increased student achievement on national and international indicators). Rather, the authors argue, that “most states’ evaluation laws fated these systems to status quo results long before” they really had a chance (p. 2).

The authors’ second assumption they imply: that the two most often used teacher evaluation indicators (i.e., the growth or value-added and observational measures) should be highly correlated, which many argue they should be IF in fact they are measuring general teacher effectiveness. But the more fundamental assumption here is that if the student learning (i.e., test based) indicators do not correlate with the observational indicators, the latter MUST be wrong, biased, distorted, and accordingly less trustworthy and the like. They add that “teachers and students are not well served when a teacher is rated effective or higher even though her [sic] students have not made sufficient gains in their learning over the course of a school year” (p. 4). Accordingly, they add that “evaluations should require that a teacher is rated well on both the student growth measures and the professional practice component (e.g., observations, student surveys, etc.) in order to be rated effective” (p. 4). Hence, also in this report the authors put forth recommendations for how states might address this challenge. See these recommendations forthcoming, as also related to a new phenomenon my students and I are studying called artificial inflation.

Artificial inflation is a term I recently coined to represent what is/was happening in Houston, and elsewhere (e.g., Tennessee), when district leaders (e.g., superintendents) mandate or force principals and other teacher effectiveness appraisers or evaluators to align their observational ratings of teachers’ effectiveness with teachers’ value-added scores, with the latter being (sometimes relentlessly) considered the “objective measure” around which all other measures (e.g., subjective observational measures) should revolve, or align. Hence, the push is to conflate the latter “subjective” measure to match the former “objective” measure, even if the process of artificial conflation causes both indicators to become invalid. As per my affidavit from the still ongoing lawsuit in Houston (see here), “[t]o purposefully and systematically endorse the engineering and distortion of the perceptible ‘subjective’ indicator, using the perceptibly ‘objective’ indicator as a keystone of truth and consequence, is more than arbitrary, capricious, and remiss…not to mention in violation of the educational measurement field’s “Standards for Educational and Psychological Testing.”

Nonetheless…

Here is one important figure, taken out of context in some ways on purpose (e.g., as the text surrounding this particular figure is ironically, subjectively used to define what the NCTQ defines as as indicators or progress, or regress).

Near Figure 1 (p. 1) the authors note that “as of January 2017, there has been little evidence of a large-scale reversal of states’ formal evaluation policies. In fact, only four states (Alaska, Mississippi, North Carolina, and Oklahoma) have reversed course on factoring student learning into a teacher’s evaluation rating” (p. 3). While this reversal of four is not illustrated in their accompanying figure, see also a prior post about what other states, beyond just these four states of dishonorable mention, have done to “reverse” the “course” (p. 3) here. While the authors shame all states for minimizing teachers’ test-based ratings before these systems had a chance, as also ignorant to what they cite as “a robust body of research” (without references or citations here, and few elsewhere in a set of footnotes), they add that it remains an unknown as to “why state educational agencies put forth regulations or guidance that would allow teachers to be rated effective without meeting their student growth goals” (p. 4). Many of us know that this was often done to counter the unreliable and invalid results often yielded via the “objective” test-based sides of things that the NCTQ continues to advance.

Otherwise, here are also some important descriptive findings:

  • Thirty states require measures of student academic growth to be at least a significant factor within teacher evaluations; another 10 states require some student growth, and 11 states do not require any objective measures of student growth (p. 5).
  • With only [emphasis added] two exceptions, in the 30 states where student
    growth is at least a significant factor in teacher evaluations, state
    rules or guidance effectively allow teachers who have not met student
    growth goals to still receive a summative rating of at least effective (p. 5).
  • In 18 [of these 30] states, state educational agency regulations and/or guidance
    explicitly permit teachers to earn a summative rating of effective even after earning a less-than-effective score on the student learning portion of their evaluations…these regulations meet the letter of the law while still allowing teachers with low ratings on
    student growth measures to be rated effective or higher (p. 5). In Colorado, for example…a teacher can earn a rating of highly effective with a score of just 1 for student growth (which the state classifies as “less than expected”) in conjunction with a top professional practice score (p. 4).
  • Ten states do not specifically address whether a teacher who has not met student growth goals may be rated as effective or higher. These states neither specifically allow nor specifically disallow such a scenario, but by failing to provide guidance to prevent such an occurrence, they enable it to exist (p. 6).
  • Only two of the 30 states (Indiana and Kentucky) make it impossible for a teacher who has not been found effective at increasing student learning to receive a summative rating of effective (p. 6).

Finally, here are some of their important recommendations, as related to all of the above, and to create more meaningful teacher evaluation systems. So they argue, states should:

  • Establish policies that preclude teachers from earning a label of effective if they are found ineffective at increasing student learning (p. 12).
  • Track the results of discrete components within evaluation systems, both statewide and districtwide. In districts where student growth measures and observation measures are significantly out of alignment, states should reevaluate their systems and/or offer districts technical assistance (p. 12). ][That is, states should possibly promote artificial inflation as we have observed elsewhere. The authors add that] to ensure that evaluation ratings better reflect teacher performance, states should [more specifically] track the results of each evaluation measure to pinpoint where misalignment between components, such as between student learning and observation measures, exists. Where major components within an evaluation system are significantly misaligned, states should examine their systems and offer districts technical assistance where needed, whether through observation training or examining student growth models or calculations (p. 12-13). [Tennessee, for example,] publishes this information so that it is transparent and publicly available to guide actions by key stakeholders and point the way to needed reforms (p. 13).

See also state-by-state reports in the appendices of the full report, in case your state was one of the state’s that responded or, rather, “recognized the factual accuracy of this analysis.”

Citation: Walsh, K., Joseph, N., Lakis, K., & Lubell, S. (2017). Running in place: How new teacher evaluations fail to live up to promises. Washington DC: National Council on Teacher Quality (NCTQ). Retrieved from http://www.nctq.org/dmsView/Final_Evaluation_Paper

Last Saturday Night Live’s VAM-Related Skit

For those of you who may have missed it last Saturday, Melissa McCarthy portrayed Sean Spicer — President Trump’s new White House Press Secretary and Communications Director — in one of the funniest of a very funny set of skits recently released on Saturday Night Live. You can watch the full video, compliments of YouTube, here:

In one of the sections of the skit, though, “Spicer” introduces “Betsy DeVos” — portrayed by Kate McKinnon and also just today confirmed as President Trump’s Secretary of Education — to answer some very simple questions about today’s public schools which she, well, very simply could not answer. See this section of the clip starting at about 6:00 (of the above 8:00 minute total skit).

In short, “the man” reporter asks “DeVos” how she values “growth versus proficiency in [sic] measuring progress in students.” Literally at a loss of words, “DeVos” responds that she really doesn’t “know anything about school.” She rambles on, until “Spicer” pushes her off of the stage 40-or-so seconds later.

Humor set aside, this was the one question Saturday Night Live writers wrote into this skit, which reminds us that what we know more generally as the purpose of VAMs is still alive and well in our educational rhetoric as well as popular culture. As background, this question apparently came from Minnesota Sen. Al Franken’s prior, albeit similar question during DeVos’s confirmation hearing.

Notwithstanding, Steve Snyder – the editorial director of The 74 — an (allegedly) non-partisan, honest, and fact-based backed by Editor-in-Chief Campbell Brown (see prior posts about this news site here and here) — took the opportunity to write a “featured” piece about this section of the script (see here). The purpose of the piece was, as the title illustrates, to help us “understand” the skit, as well as it’s important meaning for all of “us.”

Snyder notes that Saturday Night Live writers, with their humor, might have consequently (and perhaps mistakenly) “made their viewers just a little more knowledgeable about how their child’s school works,” or rather should work, as “[g]rowth vs. proficiency is a key concept in the world of education research.” Thereafter, Snyder falsely asserts that more than 2/3rds of educational researchers agree that VAMs are a good way to measure school quality. If you visit the actual statistic cited in this piece, however, as “non-partison, honest, and fact-based” that it is supposed to be, you would find (here) that this 2/3rds consists of 57% of responding American Education Finance Association (AEFA) members, and AEFA members alone, who are certainly not representative of “educational researchers” as claimed.

Regardless, Snyder asks: “Why are researchers…so in favor of [these] growth measures?” Because this disciplinary subset does not represent educational researchers writ large, but only a subset, Snyder.

As it is with politics today, many educational researchers who define themselves as aligned with the disciplines of educational finance or educational econometricians are substantively more in favor of VAMs than those who align more with the more general disciplines of educational research and educational measurement, methods, and statistics, in general. While this is somewhat of a sweeping generalization, which is not wise as I also argue and also acknowledge in this piece, there is certainly more to be said here about the validity of the inferences drawn here, and (too) often driven via the “media” like The 74.

The bottom line is to question and critically consume everything, and everyone who feels qualified to write about particular things without enough expertise in most everything, including in this case good and professional journalism, this area of educational research, and what it means to make valid inferences and then responsibly share them out with the public.