Breaking News: The End of Value-Added Measures for Teacher Termination in Houston

Recall from multiple prior posts (see, for example, here, here, here, here, and here) that a set of teachers in the Houston Independent School District (HISD), with the support of the Houston Federation of Teachers (HFT) and the American Federation of Teachers (AFT), took their district to federal court to fight against the (mis)use of their value-added scores derived via the Education Value-Added Assessment System (EVAAS) — the “original” value-added model (VAM) developed in Tennessee by William L. Sanders who just recently passed away (see here). Teachers’ EVAAS scores, in short, were being used to evaluate teachers in Houston in more consequential ways than any other district or state in the nation (e.g., the termination of 221 teachers in one year as based, primarily, on their EVAAS scores).

The case — Houston Federation of Teachers et al. v. Houston ISD — was filed in 2014 and just one day ago (October 10, 2017) came the case’s final federal suit settlement. Click here to read the “Settlement and Full and Final Release Agreement.” But in short, this means the “End of Value-Added Measures for Teacher Termination in Houston” (see also here).

More specifically, recall that the judge notably ruled prior (in May of 2017) that the plaintiffs did have sufficient evidence to proceed to trial on their claims that the use of EVAAS in Houston to terminate their contracts was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case district shall deprive any person of life, liberty, or property, without due process). That is, the judge ruled that “any effort by teachers to replicate their own scores, with the limited information available to them, [would] necessarily fail” (see here p. 13). This was confirmed by the one of the plaintiffs’ expert witness who was also “unable to replicate the scores despite being given far greater access to the underlying computer codes than [was] available to an individual teacher” (see here p. 13).

Hence, and “[a]ccording to the unrebutted testimony of [the] plaintiffs’ expert [witness], without access to SAS’s proprietary information – the value-added equations, computer source codes, decision rules, and assumptions – EVAAS scores will remain a mysterious ‘black box,’ impervious to challenge” (see here p. 17). Consequently, the judge concluded that HISD teachers “have no meaningful way to ensure correct calculation of their EVAAS scores, and as a result are unfairly subject to mistaken deprivation of constitutionally protected property interests in their jobs” (see here p. 18).

Thereafter, and as per this settlement, HISD agreed to refrain from using VAMs, including the EVAAS, to terminate teachers’ contracts as long as the VAM score is “unverifiable.” More specifically, “HISD agree[d] it will not in the future use value-added scores, including but not limited to EVAAS scores, as a basis to terminate the employment of a term or probationary contract teacher during the term of that teacher’s contract, or to terminate a continuing contract teacher at any time, so long as the value-added score assigned to the teacher remains unverifiable. (see here p. 2; see also here). HISD also agreed to create an “instructional consultation subcommittee” to more inclusively and democratically inform HISD’s teacher appraisal systems and processes, and HISD agreed to pay the Texas AFT $237,000 in its attorney and other legal fees and expenses (State of Texas, 2017, p. 2; see also AFT, 2017).

This is yet another big win for teachers in Houston, and potentially elsewhere, as this ruling is an unprecedented development in VAM litigation. Teachers and others using the EVAAS or another VAM for that matter (e.g., that is also “unverifiable”) do take note, at minimum.

“Virginia SGP” Overruled

You might recall from a post I released approximately 1.5 years ago a story about how a person who self-identifies as “Virginia SGP,” who is also now known as Brian Davison — a parent of two public school students in the affluent Loudoun, Virginia area (hereafter referred to as Virginia SGP), sued the state of Virginia in an attempt to force the release of teachers’ student growth percentile (SGP) data for all teachers across the state.

More specifically, Virginia SGP “pressed for the data’s release because he thinks parents have a right to know how their children’s teachers are performing, information about public employees that exists but has so far been hidden. He also want[ed] to expose what he sa[id was] Virginia’s broken promise to begin [to use] the data to evaluate how effective the state’s teachers are.” The “teacher data should be out there,” especially if taxpayers are paying for it.

In January of 2016, a Richmond, Virginia judge ruled in Virginia SGP’s favor. The following April, a Richmond Circuit Court judge ruled that the Virginia Department of Education was to also release Loudoun County Public Schools’ SGP scores by school and by teacher, including teachers’ identifying information. Accordingly, the judge noted that the department of education and the Loudoun school system failed to “meet the burden of proof to establish an exemption’ under Virginia’s Freedom of Information Act [FOIA]” preventing the release of teachers’ identifiable information (i.e., beyond teachers’ SGP data). The court also ordered VDOE to pay Davison $35,000 to cover his attorney fees and other costs.

As per an article published last week, the Virginia Supreme Court overruled this former ruling, noting that the department of education did not have to provide teachers’ identifiable information along with teachers’ SGP data, after all.

See more details in the actual article here, but ultimately the Virginia Supreme Court concluded that the Richmond Circuit Court “erred in ordering the production of these documents containing teachers’ identifiable information.” The court added that “it was [an] error for the circuit court to order that the School Board share in [Virginia SGP’s] attorney’s fees and costs,” pushing that decision (i.e., the decision regarding how much to pay, if anything at all, in legal fees) back down to the circuit court.

Virginia SGP plans to ask for a rehearing of this ruling. See also his comments on this ruling here.

One Florida District Kisses VAMs Goodbye

I recently wrote about how, in Louisiana, the state is reverting back to its value-added model (VAM)-based teacher accountability system after its four year hiatus (see here). The post titled “Much of the Same in Louisiana” likely did not come as a surprise to teachers there in that the state (like most other states in the sunbelt, excluding California) have a common and also perpetual infatuation with such systems, whether they be based on student-level or teacher-level accountability.

Well, at least one school district in Florida is kissing the state’s six-year infatuation with its VAM-based teacher accountability system goodbye. I could have invoked a much more colorful metaphor here, but let’s just go with something along the lines of a sophomoric love affair.

According to a recent article in the Tampa Bay Times (see here), “[u]sing new authority from the [state] Legislature, the Citrus County School Board became the first in the state to stop using VAM, citing its unfairness and opaqueness…[with this]…decision…expected to prompt other boards to action.”

That’s all the article has to offer on the topic, but let’s all hope others, in Florida and beyond, do follow.

On Conditional Bias and Correlation: A Guest Post

After I posted about “Observational Systems: Correlations with Value-Added and Bias,” a blog follower, associate professor, and statistician named Laura Ring Kapitula (see also a very influential article she wrote on VAMs here) posted comments on this site that I found of interest, and I thought would also be of interest to blog followers. Hence, I invited her to write a guest post, and she did.

She used R (i.e., a free software environment for statistical computing and graphics) to simulate correlation scatterplots (see Figures below) to illustrate three unique situations: (1) a simulation where there are two indicators (e.g., teacher value-added and observational estimates plotted on the x and y axes) that have a correlation of r = 0.28 (the highest correlation coefficient at issue in the aforementioned post); (2) a simulation exploring the impact of negative bias and a moderate correlation on a group of teachers; and (3) another simulation with two indicators that have a non-linear relationship possibly induced or caused by bias. She designed simulations (2) and (3) to illustrate the plausibility of the situation suggested next (as written into Audrey’s post prior) about potential bias in both value-added and observational estimates:

If there is some bias present in value-added estimates, and some bias present in the observational estimates…perhaps this is why these low correlations are observed. That is, only those teachers teaching classrooms inordinately stacked with students from racial minority, poor, low achieving, etc. groups might yield relatively stronger correlations between their value-added and observational scores given bias, hence, the low correlations observed may be due to bias and bias alone.

Laura continues…

Here, Audrey makes the point that a correlation of r = 0.28 is “weak.” It is, accordingly, useful to see an example of just how “weak” such a correlation is by looking at a scatterplot of data selected from a population where the true correlation is r = 0.28. To make the illustration more meaningful the points are colored based on their quintile scores as per simulated teachers’ value-added divided into the lowest 20%, next 20%, etc.

In this figure you can see by looking at the blue “least squares line” that, “on average,” as a simulated teacher’s value-added estimate increases the average of a teacher’s observational estimate increases. However, there is a lot of variability (or scatter points) around the (scatterplot) line. Given this variability, we can make statements about averages, such as “on average” teachers in the top 20% for VAM scores will likely have on average higher observed observational scores; however, there is not nearly enough precision to make any (and certainly not any good) predictions about the observational score from the VAM score for individual teachers. In fact, the linear relationship between teachers’ VAM and observational scores only accounts for about 8% of the variation in VAM score. Note: we get 8% by squaring the aforementioned r = 0.28 correlation (i.e., an R squared). The other 92% of the variance is due to error and other factors.

What this means in practice is that when correlations are this “weak,” it is reasonable to say statements about averages, for example, that “on average” as one variable increases the mean of the other variable increases, but it would not be prudent or wise to make predictions for individuals based on these data. See, for example, that individuals in the top 20% (quintile 5) of VAM have a very large spread in their scores on the observational score, with 95% of the scores in the top quintile being in between the 7th and 98th percentiles for their observational scores. So, here if we observe a VAM for a specific teacher in the top 20%, and we do not know their observational score, we cannot say much more than their observational score is likely to be in the top 90%. Similarly, if we observe a VAM in the bottom 20%, we cannot say much more than their observational score is likely to be somewhere in the bottom 90%. That’s not saying a lot, in terms of precision, but also in terms of practice.

The second scatterplot I ran to test how bias that only impacts a small group of teachers might theoretically impact an overall correlation, as posited by Audrey. Here I simulated a situation where, again, there are two values present in a population of teachers: a teacher’s value-added and a teacher’s observational score. Then I insert a group of teachers (as Audrey described) who represent 20% of a population and teach a disproportionate number of students who come from relatively lower socioeconomic, high racial minority, etc. backgrounds, and I assume this group is measured with negative bias on both indicators and this group has a moderate correlation between indicators of r = 0.50. The other 80% of the population is assumed to be uncorrelated. Note: for this demonstration I assume that this group includes 20% of teachers from the aforementioned population, these teachers I assume to be measured with negative bias (by one standard deviation on average) on both measures, and, again, I set their correlation at r = 0.50 with the other 80% of teachers at a correlation of zero.

What you can see is that if there is bias in this correlation that impacts only a certain group on the two instrument indicators; hence, it is possible that this bias can result in an observed correlation overall. In other words, a strong correlation noted in just one group of teachers (i.e., teachers scoring the lowest on their value-added and observational indicators in this case) can be relatively stronger than the “weak” correlation observed on average or overall.

Another, possible situation is that there might be a non-linear relationship between these two measures. In the simulation below, I assume that different quantiles on VAM have a different linear relationship with the observational score. For example, in the plot there is not a constant slope, but teachers who are in the first quintile on VAM I assume to have a correlation of r = 0.50 with observational scores, the second quintile I assume to have a correlation of r = 0.20, and the other quintiles I assume to be uncorrelated. This results in an overall correlation in the simulation of r = 0.24, with a very small p-value (i.e. a very small chance that a correlation of this size would be observed by random chance alone if the true correlation was zero).

What this means in practice is that if, in fact, there is a non-linear relationship between teachers’ observational and VAM scores, this can induce a small but statistically significant correlation. As evidenced, teachers in the lowest 20% on the VAM score have differences in the mean observational score depending on the VAM score (a moderate correlation of r = 0.50), but for the other 80%, knowing the VAM score is not informative as there is a very small correlation for the second quintile and no correlation for the upper 60%. So, if quintile cut-off scores are used, teachers can easily be misclassified. In sum, Pearson Correlations (the standard correlation coefficient) measure the overall strength of  linear relationships between X and Y, but if X and Y have a non-linear relationship (like as illustrated in the above), this statistic can be very misleading.

Note also that for all of these simulations very small p-values are observed (e.g., p-values <0.0000001 which, again, mean these correlations are statistically significant or that the probability of observing correlations this large by chance if the true correlation is zero, is nearly 0%). What this illustrates, again, is that correlations (especially correlations this small) are (still) often misleading. While they might be statistically significant, they might mean relatively little in the grand scheme of things (i.e., in terms of practical significance; see also “The Difference Between”Significant’ and ‘Not Significant’ is not Itself Statistically Significant” or posts on Andrew Gelman’s blog for more discussion on these topics if interested).

At the end of the day r = 0.28 is still a “weak” correlation. In addition, it might be “weak,” on average, but much stronger and statistically and practically significant for teachers in the bottom quintiles (e.g., teachers in the bottom 20%, as illustrated in the final figure above) typically teaching the highest needs students. Accordingly, this might be due, at least in part, to bias.

In conclusion, one should always be wary of claims based on “weak” correlations, especially if they are positioned to be stronger than industry standards would classify them (e.g., in the case highlighted in the prior post). Even if a correlation is “statistically significant,” it is possible that the correlation is the result of bias, and that the relationship is so weak that it is not meaningful in practice, especially when the goal is to make high-stakes decisions about individual teachers. Accordingly, when you see correlations this small, keep these scatterplots in mind or generate some of your own (see, for example, here to dive deeper into what these correlations might mean and how significant these correlations might really be).

*Please contact Dr. Kapitula directly at kapitull@gvsu.edu if you want more information or to access the R code she used for the above.

The “Widget Effect” Report Revisited

You might recall that in 2009, The New Teacher Project published a highly influential “Widget Effect” report in which researchers (see citation below) evidenced that 99% of teachers (whose teacher evaluation reports they examined across a sample of school districts spread across a handful of states) received evaluation ratings of “satisfactory” or higher. Inversely, only 1% of the teachers whose reports researchers examined received ratings of “unsatisfactory,” even though teachers’ supervisors could identify more teachers whom they deemed ineffective when asked otherwise.

Accordingly, this report was widely publicized given the assumed improbability that only 1% of America’s public school teachers were, in fact, ineffectual, and given the fact that such ineffective teachers apparently existed but were not being identified using standard teacher evaluation/observational systems in use at the time.

Hence, this report was used as evidence that America’s teacher evaluation systems were unacceptable and in need of reform, primarily given the subjectivities and flaws apparent and arguably inherent across the observational components of these systems. This reform was also needed to help reform America’s public schools, writ large, so the logic went and (often) continues to go. While binary constructions of complex data such as these are often used to ground simplistic ideas and push definitive policies, ideas, and agendas, this tactic certainly worked here, as this report (among a few others) was used to inform the federal and state policies pushing teacher evaluation system reform as a result (e.g., Race to the Top (RTTT)).

Likewise, this report continues to be used whenever a state’s or district’s new-and-improved teacher evaluation systems (still) evidence “too many” (as typically arbitrarily defined) teachers as effective or higher (see, for example, an Education Week article about this here). Although, whether in fact the systems have actually been reformed is also of debate in that states are still using many of the same observational systems they were using prior (i.e., not the “binary checklists” exaggerated in the original as well as this report, albeit true in the case of the district of focus in this study). The real “reforms,” here, pertained to the extent to which value-added model (VAM) or other growth output were combined with these observational measures, and the extent to which districts adopted state-level observational models as per the centralized educational policies put into place at the same time.

Nonetheless, now eight years later, Matthew A. Kraft – an Assistant Professor of Education & Economics at Brown University and Allison F. Gilmour – an Assistant Professor at Temple University (and former doctoral student at Vanderbilt University), revisited the original report. Just published in the esteemed, peer-reviewed journal Educational Researcher (see an earlier version of the published study here), Kraft and Gilmour compiled “teacher performance ratings across 24 [of the 38, including 14 RTTT] states that [by 2014-2015] adopted major reforms to their teacher evaluation systems” as a result of such policy initiatives. They found that “the percentage of teachers rated Unsatisfactory remains less than 1%,” except for in two states (i.e., Maryland and New Mexico), with Unsatisfactory (or similar) ratings varying “widely across states with 0.7% to 28.7%” as the low and high, respectively (see also the study Abstract).

Related, Kraft and Gilmour found that “some new teacher evaluation systems do differentiate among teachers, but most only do so at the top of the ratings spectrum” (p. 10). More specifically, observers in states in which teacher evaluation ratings include five versus four rating categories differentiate teachers more, but still do so along the top three ratings, which still does not solve the negative skew at issue (i.e., “too many” teachers still scoring “too well”). They also found that when these observational systems were used for formative (i.e., informative, improvement) purposes, teachers’ ratings were lower than when they were used for summative (i.e., final summary) purposes.

Clearly, the assumptions of all involved in this area of policy research come into play, here, akin to how they did in The Bell Curve and The Bell Curve Debate. During this (still ongoing) debate, many fervently debated whether socioeconomic and educational outcomes (e.g., IQ) should be normally distributed. What this means in this case, for example, is that for every teacher who is rated highly effective there should be a teacher rated as highly ineffective, more or less, to yield a symmetrical distribution of teacher observational scores across the spectrum.

In fact, one observational system of which I am aware (i.e., the TAP System for Teacher and Student Advancement) is marketing its proprietary system, using as a primary selling point figures illustrating (with text explaining) how clients who use their system will improve their prior “Widget Effect” results (i.e., yielding such normal curves; see Figure below, as per Jerald & Van Hook, 2011, p. 1).

Evidence also suggests that these scores are also (sometimes) being artificially deflated to assist in these attempts (see, for example, a recent publication of mine released a few days ago here in the (also) esteemed, peer-reviewed Teachers College Record about how this is also occurring in response to the “Widget Effect” report and the educational policies that follows).

While Kraft and Gilmour assert that “systems that place greater weight on normative measures such as value-added scores rather than…[just]…observations have fewer teachers rated proficient” (p. 19; see also Steinberg & Kraft, forthcoming; a related article about how this has occurred in New Mexico here; and New Mexico’s 2014-2016 data below and here, as also illustrative of the desired normal curve distributions discussed above), I highly doubt this purely reflects New Mexico’s “commitment to putting students first.”

I also highly doubt that, as per New Mexico’s acting Secretary of Education, this was “not [emphasis added] designed with quote unquote end results in mind.” That is, “the New Mexico Public Education Department did not set out to place any specific number or percentage of teachers into a given category.” If true, it’s pretty miraculous how this simply worked out as illustrated… This is also at issue in the lawsuit in which I am involved in New Mexico, in which the American Federation of Teachers won an injunction in 2015 that still stands today (see more information about this lawsuit here). Indeed, as per Kraft, all of this “might [and possibly should] undercut the potential for this differentiation [if ultimately proven artificial, for example, as based on statistical or other pragmatic deflation tactics] to be seen as accurate and valid” (as quoted here).

Notwithstanding, Kraft and Gilmour, also as part (and actually the primary part) of this study, “present original survey data from an urban district illustrating that evaluators perceive more than three times as many teachers in their schools to be below Proficient than they rate as such.” Accordingly, even though their data for this part of this study come from one district, their findings are similar to others evidenced in the “Widget Effect” report; hence, there are still likely educational measurement (and validity) issues on both ends (i.e., with using such observational rubrics as part of America’s reformed teacher evaluation systems and using survey methods to put into check these systems, overall). In other words, just because the survey data did not match the observational data does not mean either is wrong, or right, but there are still likely educational measurement issues.

Also of issue in this regard, in terms of the 1% issue, is (a) the time and effort it takes supervisors to assist/desist after rating teachers low is sometimes not worth assigning low ratings; (b) how supervisors often give higher ratings to those with perceived potential, also in support of their future growth, even if current evidence suggests a lower rating is warranted; (c) how having “difficult conversations” can sometimes prevent supervisors from assigning the scores they believe teachers may deserve, especially if things like job security are on the line; (d) supervisors’ challenges with removing teachers, including “long, laborious, legal, draining process[es];” and (e) supervisors’ challenges with replacing teachers, if terminated, given current teacher shortages and the time and effort, again, it often takes to hire (ideally more qualified) replacements.

References:

Jerald, C. D., & Van Hook, K. (2011). More than measurement: The TAP system’s lessons learned for designing better teacher evaluation systems. Santa Monica, CA: National Institute for Excellence in Teaching (NIET). Retrieved from http://files.eric.ed.gov/fulltext/ED533382.pdf

Kraft, M. A, & Gilmour, A. F. (2017). Revisiting the Widget Effect: Teacher evaluation reforms and the distribution of teacher effectiveness. Educational Researcher, 46(5) 234-249. doi:10.3102/0013189X17718797

Steinberg, M. P., & Kraft, M. A. (forthcoming). The sensitivity of teacher performance ratings to the design of teacher evaluation systems. Educational Researcher.

Weisberg, D., Sexton, S., Mulhern, J., & Keeling, D. (2009). “The Widget Effect.” Education Digest, 75(2), 31–35.

A “Next Generation” Vision for School, Teacher, and Student Accountability

Within a series of prior posts (see, for example, here and here), I have written about what the Every Student Succeeds Act (ESSA), passed in December of 2015, means for the U.S., or more specifically states’ school and teacher evaluation systems as per the federal government’s prior mandates requiring their use of growth and value-added models (VAMs).

Related, states were recently (this past May) required to submit to the federal government their revised school and teacher evaluation plans, post ESSA, given how they have changed, or not. While I have a doctoral student currently gathering updated teacher evaluation data, state-by-state, and our preliminary findings indicate that “things” have not (yet) changed much post ESSA, at least at the teacher level of focus in this study and except for in a few states (e.g., Connecticut, Oklahoma), states still have the liberties to change that which they do on both ends (i.e., school and teacher accountability).

Recently, a colleague recently shared with me a study titled “Next Generation Accountability: A Vision for School Improvement Under ESSA” that warrants coverage here, in hopes that states are still “out there” trying to reform their school and teacher evaluation systems, of course, for the better. While the document was drafted by folks coming from the aforementioned state of Oklahoma, who are also affiliated with the Learning Policy Institute, it is important to note that the document was also vetted by some “heavy hitters” in this line of research including, but not limited to, David C. Berliner (Arizona State University), Peter W. Cookson Jr. (American Institutes for Research (AIR)), Linda Darling-Hammond (Stanford University), and William A. Firestone (Rutgers University).

As per ESSA, states are to have increased opportunities “to develop innovative strategies for advancing equity, measuring success, and developing cycles of continuous improvement” while using “multiple measures to assess school and student performance” (p. iii). Likewise, the authors of this report state that “A broader spectrum of indicators,
going well beyond a summary of annual test performance, seems necessary to account transparently for performance and assign responsibility for improvement.”

Here are some of their more specific recommendations that I found of value for blog followers:

  • The continued use of a single composite indicator to reduce and then sort teachers or schools by their overall effectiveness or performance (e.g., using teacher “effectiveness” categories or school A–F letter grades) is myopic, to say the least. This is because doing this (a) misses all that truly “matters,” including  multidimensional concepts and (non)cognitive competencies we want students to know and to be able to do, not captured by large-scale tests; and (b) inhibits the usefulness of what may be informative, stand-alone data (i.e., as taken from “multiple measures” individually) once these data are reduced and then collapsed so that they can be used for hierarchical categorizations and rankings. This also (c) very much trivializes the multiple causes of low achievement, also of importance and in much greater need of attention.
  • Accordingly, “Next Generation” accountability systems should include “a broad palette of functionally significant indicators to replace [such] single composite indicators [as this] will likely be regarded as informational rather than controlling, thereby motivating stakeholders to action” (p. ix). Stakeholders should be defined in the following terms…
  • “Next Generation” accountability systems should incorporate principles of “shared accountability,” whereby educational responsibility and accountability should be “distributed across system components and not foisted upon any one group of actors or stakeholders” (p. ix). “[E]xerting pressure on stakeholders who do not have direct control over [complex educational] elements is inappropriate and worse, harmful” (p. ix). Accordingly, the goal of “shared accountability” is to “create an accountability environment in which all participants [including governmental organizations] recognize their obligations and commitments in relation to each other” (p. ix) and their collective educational goals.
  • To facilitate this, “Next Generation” information systems should be designed and implemented in order to service the “dual reporting needs of compliance with federal mandates and the particular improvement needs of a state’s schools,” while also addressing “the different information needs of state, district, school site
    leadership, teachers, and parents” (p. ix). Data may include, at minimum, data on school resources, processes, outcomes, and other nuanced indicators, and this information must be made transparent and accessible in order for all types of data users to be responsive, holistically and individually (e.g, at school or classroom levels). The formative functions of such “Next Generation” informational systems, accordingly, take priority, at least for initial terms, until informational data can be used to, with priority, “identify and transform schools in catastrophic failure” (p. ix).
  • Related, all test- or other educational measurement-related components of states’ “Next Generation” statutes and policies should adhere to the Standards for Educational and Psychological Testing, and more specifically their definitions of reliability, validity, bias, fairness, and the like. Statutes and policies should also be written “in the least restrictive and prescriptive terms possible to allow for [continous] corrective action and improvement” (p. x).
  • Finally, “Next Generation” accountability systems should adhere to the following five essentials: “(a) state, district, and school leaders must create a system-wide culture grounded in “learning to improve;” (b) learning to improve using [the aforementioned informational systems also] necessitates the [overall] development of [students’] strong pedagogical data-literacy skills; (c) resources in addition to funding—including time, access to expertise, and collaborative opportunities—should be prioritized for sustaining these ongoing improvement efforts; (d) there must be a coherent structure of state-level support for learning to improve, including the development of a strong Longitudinal Data System (LDS) infrastructure; and (e) educator labor market policy in some states may need adjustment to support the above elements” (p. x).

To read more, please access the full report here.

In sum, “Next Generation” accountability systems aim at “a loftier goal—universal college and career readiness—a goal that current accountability systems were not designed to achieve. To reach this higher level, next generation accountability must embrace a wider vision, distribute trustworthy performance information, and build support infrastructure, while eliciting the assent, support, and enthusiasm of citizens and educators” (p. vii).

As briefly noted prior, “a few states have been working to put more supportive, humane accountability systems in place, but others remain stuck in a compliance mindset that undermines their ability to design effective accountability systems” (p. vii). Perhaps (or perhaps likely) this is because for the past decade or so states invested so much time, effort, and money to “reforming” their prior teacher evaluations systems as formerly required by the federal government. This included investments in states’ growth models of VAMs, onto which many/most states seem to be holding firm.

Hence, while it seems that the residual effects of the federal governments’ former efforts are still dominating states’ actions with regards to educational accountability, hopefully some states can at least begin to lead the way to what will likely yield the educational reform…still desired…

Large-Scale Test Scores to Officially Count for 40% V. 50% of Nevada Teachers’ Annual Evaluations

Written into my last post here were “The ‘Top Ten’ Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers…” really anywhere, but specific to this post in the state of Nevada. Accordingly, this post pertained to what were then the ongoing legislative negotiations in Nevada, and a testimony that I submitted and titled as such.

Well, it looks like those in Nevada who, as detailed more fully in another post here, were “trying to eliminate — or at least reduce — the role [students’] standardized tests play[ed] in evaluations of teachers, saying educators [were] being unfairly judged on factors outside of their control,” lost their legislative fight.

As per their proposed AB320, the state would have eliminated large-scale standardized test results as a mandated teacher evaluation measure, but the state would have allowed local assessments to account for 20% of a teacher’s total evaluation.

On Friday, however, the Nevada Independent released an article about how the state, instead, passed a “compromised bill.” Accordingly, large-scale standardized test scores are to still to be used to evaluate teachers, although they are to now count for 40% versus 50% of Nevada teachers’ overall evaluation scores. This is clearly a loss given the bill was passed as “something [so] much closer to the system already in place” (i.e., moving from 50% to 40%).

This is all  unfortunate, also given this outcome seemed to come down to a vote that fell along party lines (i.e., in favor of the 40% “compromise”), and this was ultimately signed by Nevada’s Republican Governor Sandoval, who also had the authority to see AB320 through (i.e., not in its revised form).

Apparently, Nevada will continue to put up a good fight. Hopefully in the future, the state will also fall in line with what seems to be trending across other states (e.g., Connecticut, Texas), in which legislators are removing such misinformed, arbitrary, and commonsensical (i.e., without research evidence and support) mandates and requirements.

Also Last Thursday in Nevada: The “Top Ten” Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers

Last Thursday was a BIG day in terms of value-added models (VAMs). For those of you who missed it, US Magistrate Judge Smith ruled — in Houston Federation of Teachers (HFT) et al. v. Houston Independent School District (HISD) — that Houston teacher plaintiffs’ have legitimate claims regarding how their EVAAS value-added estimates, as used (and abused) in HISD, was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process). See post here: “A Big Victory in Court in Houston.” On the same day, “we” won another court case — Texas State Teachers Association v. Texas Education Agency —  on which The Honorable Lora J. Livingston ruled that the state was to remove all student growth requirements from all state-level teacher evaluation systems. In other words, and in the name of increased local control, teachers throughout Texas will no longer be required to be evaluated using their students’ test scores. See prior post here: “Another Big Victory in Court in Texas.”

Also last Thursday (it was a BIG day, like I said), I testified, again, regarding a similar provision (hopefully) being passed in the state of Nevada. As per a prior post here, Nevada’s “Democratic lawmakers are trying to eliminate — or at least reduce — the role [students’] standardized tests play in evaluations of teachers, saying educators are being unfairly judged on factors outside of their control.” More specifically, as per AB320 the state would eliminate statewide, standardized test results as a mandated teacher evaluation measure but allow local assessments to account for 20% of a teacher’s total evaluation. AB320 is still in work session. It has the votes in committee and on the floor, thus far.

The National Center on Teacher Quality (NCTQ), unsurprisingly (see here and here), submitted (unsurprising) testimony against AB320 that can be read here, and I submitted testimony (I think, quite effectively 😉 ) refuting their “research-based” testimony, and also making explicit what I termed “The “Top Ten” Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers” here. I have also pasted my submission below, in case anybody wants to forward/share any of my main points with others, especially others in similar positions looking to impact state or local educational policies in similar ways.

*****

May 4, 2017

Dear Assemblywoman Miller:

Re: The “Top Ten” Research-Based Reasons Why Large-Scale, Standardized Tests Should Not Be Used to Evaluate Teachers

While I understand that the National Council on Teacher Quality (NCTQ) submitted a letter expressing their opposition against Assembly Bill (AB) 320, it should be officially noted that, counter to that which the NCTQ wrote into its “research-based” letter,[1] the American Statistical Association (ASA), the American Educational Research Association (AERA), the National Academy of Education (NAE), and other large-scale, highly esteemed, professional educational and educational research/measurement associations disagree with the assertions the NCTQ put forth. Indeed, the NCTQ is not a nonpartisan research and policy organization as claimed, but one of only a small handful of partisan operations still in existence and still pushing forward what is increasingly becoming dismissed as America’s ideal teacher evaluation systems (e.g., announced today, Texas dropped their policy requirement that standardized test scores be used to evaluate teachers; Connecticut moved in the same policy direction last month).

Accordingly, these aforementioned and highly esteemed organizations have all released statements cautioning all against the use of students’ large-scale, state-level standardized tests to evaluate teachers, primarily, for the following research-based reasons, that I have limited to ten for obvious purposes:

  1. The ASA evidenced that teacher effects correlate with only 1-14% of the variance in their students’ large-scale standardized test scores. This means that the other 86%-99% of the variance is due to factors outside of any teacher’s control (e.g., out-of-school and student-level variables). That teachers’ effects, as measured by large-scaled standardized tests (and not including other teacher effects that cannot be measured using large-scaled standardized tests), account for such little variance makes using them to evaluate teachers wholly irrational and unreasonable.
  1. Large-scale standardized tests have always been, and continue to be, developed to assess levels of student achievement, but not levels of growth in achievement over time, and definitely not growth in achievement that can be attributed back to a teacher (i.e., in terms of his/her effects). Put differently, these tests were never designed to estimate teachers’ effects; hence, using them in this regard is also psychometrically invalid and indefensible.
  1. Large-scale standardized tests, when used to evaluate teachers, often yield unreliable or inconsistent results. Teachers who should be (more or less) consistently effective are, accordingly, being classified in sometimes highly inconsistent ways year-to-year. As per the current research, a teacher evaluated using large-scale standardized test scores as effective one year has a 25% to 65% chance of being classified as ineffective the following year(s), and vice versa. This makes the probability of a teacher being identified as effective, as based on students’ large-scale test scores, no different than the flip of a coin (i.e., random).
  1. The estimates derived via teachers’ students’ large-scale standardized test scores are also invalid. Very limited evidence exists to support that teachers whose students’ yield high- large-scale standardized tests scores are also effective using at least one other correlated criterion (e.g., teacher observational scores, student satisfaction survey data), and vice versa. That these “multiple measures” don’t map onto each other, also given the error prevalent in all of the “multiple measures” being used, decreases the degree to which all measures, students’ test scores included, can yield valid inferences about teachers’ effects.
  1. Large-scale standardized tests are often biased when used to measure teachers’ purported effects over time. More specifically, test-based estimates for teachers who teach inordinate proportions of English Language Learners (ELLs), special education students, students who receive free or reduced lunches, students retained in grade, and gifted students are often evaluated not as per their true effects but group effects that bias their estimates upwards or downwards given these mediating factors. The same thing holds true with teachers who teach English/language arts versus mathematics, in that mathematics teachers typically yield more positive test-based effects (which defies logic and commonsense).
  1. Related, large-scale standardized tests estimates are fraught with measurement errors that negate their usefulness. These errors are caused by inordinate amounts of inaccurate and missing data that cannot be replaced or disregarded; student variables that cannot be statistically “controlled for;” current and prior teachers’ effects on the same tests that also prevent their use for making determinations about single teachers’ effects; and the like.
  1. Using large-scale standardized tests to evaluate teachers is unfair. Issues of fairness arise when these test-based indicators impact some teachers more than others, sometimes in consequential ways. Typically, as is true across the nation, only teachers of mathematics and English/language arts in certain grade levels (e.g., grades 3-8 and once in high school) can be measured or held accountable using students’ large-scale test scores. Across the nation, this leaves approximately 60-70% of teachers as test-based ineligible.
  1. Large-scale standardized test-based estimates are typically of very little formative or instructional value. Related, no research to date evidences that using tests for said purposes has improved teachers’ instruction or student achievement as a result. As per UCLA Professor Emeritus James Popham: The farther the test moves away from the classroom level (e.g., a test developed and used at the state level) the worst the test gets in terms of its instructional value and its potential to help promote change within teachers’ classrooms.
  1. Large-scale standardized test scores are being used inappropriately to make consequential decisions, although they do not have the reliability, validity, fairness, etc. to satisfy that for which they are increasingly being used, especially at the teacher-level. This is becoming increasingly recognized by US court systems as well (e.g., in New York and New Mexico).
  1. The unintended consequences of such test score use for teacher evaluation purposes are continuously going unrecognized (e.g., by states that pass such policies, and that states should acknowledge in advance of adapting such policies), given research has evidenced, for example, that teachers are choosing not to teach certain types of students whom they deem as the most likely to hinder their potentials positive effects. Principals are also stacking teachers’ classes to make sure certain teachers are more likely to demonstrate positive effects, or vice versa, to protect or penalize certain teachers, respectively. Teachers are leaving/refusing assignments to grades in which test-based estimates matter most, and some are leaving teaching altogether out of discontent or in professional protest.

[1] Note that the two studies the NCTQ used to substantiate their “research-based” letter would not support the claims included. For example, their statement that “According to the best-available research, teacher evaluation systems that assign between 33 and 50 percent of the available weight to student growth ‘achieve more consistency, avoid the risk of encouraging too narrow a focus on any one aspect of teaching, and can support a broader range of learning objectives than measured by a single test’ is false. First, the actual “best-available” research comes from over 10 years of peer-reviewed publications on this topic, including over 500 peer-reviewed articles. Second, what the authors of the Measures of Effective Teaching (MET) Studies found was that the percentages to be assigned to student test scores were arbitrary at best, because their attempts to empirically determine such a percentage failed. This face the authors also made explicit in their report; that is, they also noted that the percentages they suggested were not empirically supported.

Breaking News: Another Big Victory in Court in Texas

Earlier today I released a post regarding “A Big Victory in Court in Houston,” in which I wrote about how, yesterday, US Magistrate Judge Smith ruled — in Houston Federation of Teachers et al. v. Houston Independent School District — that Houston teacher plaintiffs’ have legitimate claims regarding how their Education Value-Added Assessment System (EVAAS) value-added scores, as used (and abused) in HISD, was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process). Hence, on this charge, this case is officially going to trial.

Well, also yesterday, “we” won another court case on which I also served as an expert witness (I served as an expert witness on behalf of the plaintiffs alongside Jesse Rothstein in the court case noted above). As per this case — Texas State Teachers Association v. Texas Education Agency, Mike Morath in his Official Capacity as Commissioner of Education for the State of Texas (although there were three similar cases also filed – see all four referenced below) — The Honorable Lora J. Livingston ruled that the Defendants are to make revisions to 19 Tex. Admin. Code § 150.1001 that most notably include the removal of (A) student learning objectives [SLOs], (B) student portfolios, (C) pre and post test results on district level assessments; or (D) value added data based on student state assessment results. In addition, “The rules do not restrict additional factors a school district may consider…,” and “Under the local appraisal system, there [will be] no required weighting for each measure…,” although districts can chose to weight whatever measures they might choose. “Districts can also adopt an appraisal system that does not provide a single, overall summative rating.” That is, increased local control.

If the Texas Education Agency (TEA) does not adopt the regulations put forth by the court by next October, this case will continue. This does not look likely, however, in that as per a news article released today, here, Texas “Commissioner of Education Mike Morath…agreed to revise the [states’] rules in exchange for the four [below] teacher groups’ suspending their legal challenges.” As noted prior, the terms of this settlement call for the removal of the above-mentioned, state-required, four growth measures when evaluating teachers.

This was also highlighted in a news article, released yesterday, here, with this one more generally about how teachers throughout Texas will no longer be evaluated using their students’ test scores, again, as required by the state.

At the crux of this case, as also highlighted in this particular piece, and to which I testified (quite extensively), was that the value-added measures formerly required/suggested by the state did not constitute teachers’ “observable,” job-related behaviors. See also a prior post about this case here.

*****

Cases Contributing to this Ruling:

1. Texas State Teachers Association v. Texas Education Agency, Mike Morath, in his Official Capacity as Commissioner of Education for the State of Texas; in the 345th Judicial District Court, Travis County, Texas

2. Texas Classroom Teachers Association v. Mike Morath, Texas Commissioner of Education; in the 419th Judicial District Court, Travis County, Texas

3. Texas American Federation of Teachers v. Mike Morath, Commissioner of Education, in his official capacity, and Texas Education Agency; in the 201st Judicial District Court, Travis County, Texas

4. Association of Texas Professional Educators v. Mike Morath, the Commissioner of Education and the Texas Education Agency; in the 200th District Court of Travis County, Texas.

Breaking News: A Big Victory in Court in Houston

Recall from multiple prior posts (see here, here, here, and here) that a set of teachers in the Houston Independent School District (HISD), with the support of the Houston Federation of Teachers (HFT) and the American Federation of Teachers (AFT), took their district to federal court to fight against the (mis)use of their value-added scores, derived via the Education Value-Added Assessment System (EVAAS) — the “original” value-added model (VAM) developed in Tennessee by William L. Sanders who just recently passed away (see here). Teachers’ EVAAS scores, in short, were being used to evaluate teachers in Houston in more consequential ways than anywhere else in the nation (e.g., the termination of 221 teachers in just one year as based, primarily, on their EVAAS scores).

The case — Houston Federation of Teachers et al. v. Houston ISD — was filed in 2014 and just yesterday, United States Magistrate Judge Stephen Wm. Smith denied in the United States District Court, Southern District of Texas, the district’s request for summary judgment given the plaintiffs’ due process claims. Put differently, Judge Smith ruled that the plaintiffs’ did have legitimate claims regarding how EVAAS use in HISD was a violation of their Fourteenth Amendment due process protections (i.e., no state or in this case organization shall deprive any person of life, liberty, or property, without due process). Hence, on this charge, this case is officially going to trial.

This is a huge victory, and one unprecedented that will likely set precedent, trial pending, for others, and more specifically other teachers.

Of primary issue will be the following (as taken from Judge Smith’s Summary Judgment released yesterday): “Plaintiffs [will continue to] challenge the use of EVAAS under various aspects of the Fourteenth Amendment, including: (1) procedural due process, due to lack of sufficient information to meaningfully challenge terminations based on low EVAAS scores,” and given “due process is designed to foster government decision-making that is both fair and accurate.”

Related, and of most importance, as also taken directly from Judge Smith’s Summary, he wrote:

  • HISD’s value-added appraisal system poses a realistic threat to deprive plaintiffs of constitutionally protected property interests in employment.
  • HISD does not itself calculate the EVAAS score for any of its teachers. Instead, that task is delegated to its third party vendor, SAS. The scores are generated by complex algorithms, employing “sophisticated software and many layers of calculations.” SAS treats these algorithms and software as trade secrets, refusing to divulge them to either HISD or the teachers themselves. HISD has admitted that it does not itself verify or audit the EVAAS scores received from SAS, nor does it engage any contractor to do so. HISD further concedes that any effort by teachers to replicate their own scores, with the limited information available to them, will necessarily fail. This has been confirmed by plaintiffs’ expert, who was unable to replicate the scores despite being given far greater access to the underlying computer codes than is available to an individual teacher [emphasis added, as also related to a prior post about how SAS claimed that plaintiffs violated SAS’s protective order (protecting its trade secrets), that the court overruled, see here].
  • The EVAAS score might be erroneously calculated for any number of reasons, ranging from data-entry mistakes to glitches in the computer code itself. Algorithms are human creations, and subject to error like any other human endeavor. HISD has acknowledged that mistakes can occur in calculating a teacher’s EVAAS score; moreover, even when a mistake is found in a particular teacher’s score, it will not be promptly corrected. As HISD candidly explained in response to a frequently asked question, “Why can’t my value-added analysis be recalculated?”:
    • Once completed, any re-analysis can only occur at the system level. What this means is that if we change information for one teacher, we would have to re- run the analysis for the entire district, which has two effects: one, this would be very costly for the district, as the analysis itself would have to be paid for again; and two, this re-analysis has the potential to change all other teachers’ reports.
  • The remarkable thing about this passage is not simply that cost considerations trump accuracy in teacher evaluations, troubling as that might be. Of greater concern is the house-of-cards fragility of the EVAAS system, where the wrong score of a single teacher could alter the scores of every other teacher in the district. This interconnectivity means that the accuracy of one score hinges upon the accuracy of all. Thus, without access to data supporting all teacher scores, any teacher facing discharge for a low value-added score will necessarily be unable to verify that her own score is error-free.
  • HISD’s own discovery responses and witnesses concede that an HISD teacher is unable to verify or replicate his EVAAS score based on the limited information provided by HISD.
  • According to the unrebutted testimony of plaintiffs’ expert, without access to SAS’s proprietary information – the value-added equations, computer source codes, decision rules, and assumptions – EVAAS scores will remain a mysterious “black box,” impervious to challenge.
  • While conceding that a teacher’s EVAAS score cannot be independently verified, HISD argues that the Constitution does not require the ability to replicate EVAAS scores “down to the last decimal point.” But EVAAS scores are calculated to the second decimal place, so an error as small as one hundredth of a point could spell the difference between a positive or negative EVAAS effectiveness rating, with serious consequences for the affected teacher.

Hence, “When a public agency adopts a policy of making high stakes employment decisions based on secret algorithms incompatible with minimum due process, the proper remedy is to overturn the policy.”

Moreover, he wrote, that all of this is part of the violation of teaches’ Fourteenth Amendment rights. Hence, he also wrote, “On this summary judgment record, HISD teachers have no meaningful way to ensure correct calculation of their EVAAS scores, and as a result are unfairly subject to mistaken deprivation of constitutionally protected property interests in their jobs.”

Otherwise, Judge Smith granted summary judgment to the district on the other claims forwarded by the plaintiffs, including plaintiffs’ equal protection claims. All of us involved in the case — recall that Jesse Rothstein and I served as the expert witnesses on behalf of the plaintiffs, and Thomas Kane of the Measures of Effective Teaching (MET) Project and John Friedman of the infamous Chetty et al. studies (see here and here) served as the expert witnesses on behalf of the defendants — knew that all of the plaintiffs’ claims would be tough to win given all of the constitutional legal standards would be difficult for plaintiffs to satisfy (e.g., that evaluating teachers using their value-added scores was not “unreasonable” was difficult to prove, as it was in the Tennessee case we also fought and was then dismissed on similar grounds (see here)).

Nonetheless, that “we” survived on the due process claim is fantastic, especially as this is the first case like this of which we are aware across the country.

Here is the press release, released last night by the AFT:

May 4, 2017 – AFT, Houston Federation of Teachers Hail Court Ruling on Flawed Evaluation System

Statements by American Federation of Teachers President Randi Weingarten and Houston Federation of Teachers President Zeph Capo on U.S. District Court decision on Houston’s Evaluation Value-Added Assessment System (EVAAS), known elsewhere as VAM or value-added measures:

AFT President Randi Weingarten: “Houston developed an incomprehensible, unfair and secret algorithm to evaluate teachers that had no rational meaning. This is the algebraic formula: = + (Σ∗≤Σ∗∗ × ∗∗∗∗=1)+

“U.S. Magistrate Judge Stephen Smith saw that it was seriously flawed and posed a threat to teachers’ employment rights; he rejected it. This is a huge victory for Houston teachers, their students and educators’ deeply held contention that VAM is a sham.

“The judge said teachers had no way to ensure that EVAAS was correctly calculating their performance score, nor was there a way to promptly correct a mistake. Judge Smith added that the proper remedy is to overturn the policy; we wholeheartedly agree. Teaching must be about helping kids develop the skills and knowledge they need to be prepared for college, career and life—not be about focusing on test scores for punitive purposes.”

HFT President Zeph Capo: “With this decision, Houston should wipe clean the record of every teacher who was negatively evaluated. From here on, teacher evaluation systems should be developed with educators to ensure that they are fair, transparent and help inform instruction, not be used as a punitive tool.”