Ohio Rejects Subpar VAM, for Another VAM Arguably Less Subpar?

From a prior post coming from Ohio (see here), you may recall that Ohio state legislators recently introduced a bill to review its state’s value-added model (VAM), especially as it pertains to the state’s use of their VAM (i.e., the Education Value-Added Assessment System (EVAAS); see more information about the use of this model in Ohio here).

As per an article published last week in The Columbus Dispatch, the Ohio Department of Education (ODE) apparently rejected a proposal made by the state’s pro-charter school Ohio Coalition for Quality Education and the state’s largest online charter school, all of whom wanted to add (or replace) this state’s VAM with another, unnamed “Similar Students” measure (which could be the Student Growth Percentiles model discussed prior on this blog, for example, here, here, and here) used in California.

The ODE charged that this measure “would lower expectations for students with different backgrounds, such as those in poverty,” which is not often a common criticism of this model (if I have the model correct), nor is it a common criticism of the model they already have in place. In fact, and again if I have the model correct, these are really the only two models that do not statistically control for potentially biasing factors (e.g., student demographic and other background factors) when calculating teachers’ value-added; hence, their arguments about this model may be in actuality no different than that which they are already doing. Hence, statements like that made by Chris Woolard, senior executive director of the ODE, are false: “At the end of the day, our system right now has high expectations for all students. This (California model) violates that basic principle that we want all students to be able to succeed.”

The models, again if I am correct, are very much the same. While indeed the California measurement might in fact consider “student demographics such as poverty, mobility, disability and limited-English learners,” this model (if I am correct on the model) does not statistically factor these variables out. If anything, the state’s EVAAS system does, even though EVAAS modelers claim they do not do this, by statistically controlling for students’ prior performance, which (unfortunately) has these demographics already built into them. In essence, they are already doing the same thing they now protest.

Indeed, as per a statement made by Ron Adler, president of the Ohio Coalition for Quality Education, not only is it “disappointing that ODE spends so much time denying that poverty and mobility of students impedes their ability to generate academic performance…they [continue to] remain absolutely silent about the state’s broken report card and continually defend their value-added model that offers no transparency and creates wild swings for schools across Ohio” (i.e., the EVAAS system, although in all fairness all VAMs and the SGP yield the “wild swings’ noted). See, for example, here.

What might be worse, though, is that the ODE apparently found that, depending on the variables used in the California model, it produced different results. Guess what! All VAMs, depending on the variables used, produce different results. In fact, using the same data and different VAMs for the same teachers at the same time also produce (in some cases grossly) different results. The bottom line here is if any thinks that any VAM is yielding estimates from which valid or “true” statements can be made are fooling themselves.

VAM-Based Chaos Reigns in Florida, as Caused by State-Mandated Teacher Turnovers

The state of Florida is another one of our state’s to watch in that, even since the passage of the Every Student Succeeds Act (ESSA) last January, the state is still moving forward with using its VAMs for high-stakes accountability reform. See my most recent post about one district in Florida here, after the state ordered it to dismiss a good number of its teachers as per their low VAM scores when this school year started. After realizing this also caused or contributed to a teacher shortage in the district, the district scrambled to hire Kelly Services contracted substitute teachers to replace them, after which the district also put administrators back into the classroom to help alleviate the bad situation turned worse.

In a recent post released by The Ledger, teachers from the same Polk County School District (size = 100K students) added much needed details and also voiced concerns about all of this in the article that author Madison Fantozzi titled “Polk teachers: We are more than value-added model scores.”

Throughout this piece Fantozzi covers the story of Elizabeth Keep, a teacher who was “plucked from” the middle school in which she taught for 13 years, after which she was involuntarily placed at a district high school “just days before she was to report back to work.” She was one of 35 teachers moved from five schools in need of reform as based on schools’ value-added scores, although this was clearly done with no real concern or regard of the disruption this would cause these teachers, not to mention the students on the exiting and receiving ends. Likewise, and according to Keep, “If you asked students what they need, they wouldn’t say a teacher with a high VAM score…They need consistency and stability.” Apparently not. In Keep’s case, she “went from being the second most experienced person in [her middle school’s English] department…where she was department chair and oversaw the gifted program, to a [new, and never before] 10th- and 11th-grade English teacher” at the new high school to which she was moved.

As background, when Polk County School District officials presented turnaround plans to the State Board of Education last July, school board members “were most critical of their inability to move ‘unsatisfactory’ teachers out of the schools and ‘effective’ teachers in.”  One board member, for example, expressed finding it “horrendous” that the district was “held hostage” by the extent to which the local union was protecting teachers from being moved as per their value-added scores. Referring to the union, and its interference in this “reform,” he accused the unions of “shackling” the districts and preventing its intended reforms. Note that the “effective” teachers who are to replace the “ineffective” ones can earn up to $7,500 in bonuses per year to help the “turnaround” the schools into which they enter.

Likewise, the state’s Commissioner of Education concurred saying that she also “wanted ‘unsatisfactory’ teachers out and ‘highly effective’ teachers in,” again, with effectiveness being defined by teachers’ value-added or lack thereof, even though (1) the teachers targeted only had one or two years of the three years of value-added data required by state statute, and even though (2) the district’s senior director of assessment, accountability and evaluation noted that, in line with a plethora of other research findings, teachers being evaluated using the state’s VAM have a 51% chance of changing their scores from one year to the next. This lack of reliability, as we know it, should outright prevent any such moves in that without some level of stability, valid inferences from which valid decisions are to be made cannot be drawn. It’s literally impossible.

Nonetheless, state board of education members “unanimously… threatened to take [all of the district’s poor performing] over or close them in 2017-18 if district officials [didn’t] do what [the Board said].” See also other tales of similar districts in the article available, again, here.

In Keep’s case, “her ‘unsatisfactory’ VAM score [that caused the district to move her, as] paired with her ‘highly effective’ in-class observations by her administrators brought her overall district evaluation to ‘effective’…[although she also notes that]…her VAM scores fluctuate because the state has created a moving target.” Regardless, Keep was notified “five days before teachers were due back to their assigned schools Aug. 8 [after which she was] told she had to report to a new school with a different start time that [also] disrupted her 13-year routine and family that shares one car.”

VAM-based chaos reigns, especially in Florida.

New Empirical Evidence: Students’ “Persistent Economic Disadvantage” More Likely to Bias Value-Added Estimates

The National Bureau of Economic Research (NBER) recently released a circulated but not-yet internally or externally reviewed study titled “The Gap within the Gap: Using Longitudinal Data to Understand Income Differences in Student Achievement.” Note that we have covered NBER studies such as this in the past in this blog, so in all fairness and like I have noted in the past, this paper should also be critically consumed, as well as my interpretations of the authors’ findings.

Nevertheless, this study is authored by Katherine Michelmore — Assistant Professor of Public Administration and International Affairs at Syracuse University, and Susan Dynarski — Professor of Public Policy, Education, and Economics at the University of Michigan, and this study is entirely relevant to value-added models (VAMs). Hence, below I cover their key highlights and takeaways, as I see them. I should note up front, however, that the authors did not directly examine how the new measure of economic disadvantage that they introduce (see below) actually affects calculations of teacher-level value-added. Rather, they motivate their analyses by saying that calculating teacher value-added is one application of their analyses.

The background to their study is as follows: “Gaps in educational achievement between high- and low-income children are growing” (p. 1), but the data that are used to capture “high- and low-income” in the state of Michigan (i.e., the state in which their study took place) and many if not most other states throughout the US, capture “income” demographics in very rudimentary, blunt, and often binary ways (i.e., “yes” for students who are eligible to receive federally funded free-or-reduced lunches and “no” for the ineligible).

Consequently, in this study the authors “leverage[d] the longitudinal structure of these data sets to develop a new measure of persistent economic disadvantage” (p. 1), all the while defining “persistent economic disadvantage” by the extent to which students were “eligible for subsidized meals in every grade since kindergarten” (p. 8). Students “who [were] never eligible for subsidized meals during those grades [were] defined as never [being economically] disadvantaged” (p. 8), and students who were eligible for subsidized meals for variable years were defined as “transitorily disadvantaged” (p. 8). This all runs counter, however, to the binary codes typically used, again, across the nation.

Appropriately, then, their goal (among other things) was to see how a new measure they constructed to better measure and capture “persistent economic disadvantage” might help when calculating teacher-level value-added. They accordingly argue (among other things) that, perhaps, not accounting for persistent disadvantage might subsequently cause more biased value-added estimates “against teachers of [and perhaps schools educating] persistently disadvantaged children” (p. 3). This, of course, also depends on how persistently disadvantaged students are (non)randomly assigned to teachers.

With statistics like the following as also reported in their report: “Students [in Michigan] [persistently] disadvantaged by 8th grade were six times more likely to be black and four times more likely to be Hispanic, compared to those who were never disadvantaged,” their assertions speak volumes not only to the importance of their findings for educational policy, but also for the teachers and schools still being evaluated using value-added scores and the researchers investigating, criticizing, promoting, or even trying to make these models better (if that is possible). In short, though, teachers who are disproportionately teaching in urban areas with more students akin to their equally disadvantaged peers, might realize relatively more biased value-added estimates as a result.

For value-added purposes, then, it is clear that the assumptions that controlling for student disadvantage by using such basal indicators of current economic disadvantage is overly simplistic, and just using test scores to also count for this economic disadvantage (i.e., as promoted in most versions of the Education Value-Added Assessment System (EVAAS)) is likely worse. More specifically, the assumption that economic disadvantage also does not impact some students more than others over time, or over the period of data being used to capture value-added (typically 3-5 years of students’ test score data), is also highly susceptible. “[T]hat children who are persistently disadvantaged perform worse than those who are disadvantaged in only some grades” (p. 14) also violates another fundamental assumption that teachers’ effects are consistent over time for similar students who learn at more or less consistent rates over time, regardless of these and other demographics.

The bottom line here, then, is that the indicator that should be used instead of our currently used proxies for current economic disadvantage is the number of grades students spend in economic disadvantage. If the value-added indicator does not effectively account for the “negative, nearly linear relationship between [students’ test] scores and the number of grades spent in economic disadvantage” (p. 18), while controlling for other student demographics and school fixed effects, value-added estimates will likely be (even) more biased against teachers who teach these students as a result.

Otherwise, teachers who teach students with persistent economic disadvantages will likely have it worse (i.e., in terms of bias) than teachers who teach students with current economic disadvantages, teachers who teach students with economically disadvantaged in their current or past histories will have it worse than teachers who teach students without (m)any prior economic disadvantages, and so on.

Citation: Michelmore, K., & Dynarski, S. (2016). The gap within the gap: Using longitudinal data to understand income differences in student achievement. Cambridge, MA: National Bureau of Economic Research (NBER). Retrieved from http://www.nber.org/papers/w22474

Special Issue of “Educational Researcher” (Paper #8 of 9, Part I): A More Research-Based Assessment of VAMs’ Potentials

Recall that the peer-reviewed journal Educational Researcher (ER) – published a “Special Issue” including nine articles examining value-added measures (VAMs). I have reviewed the next of nine articles (#8 of 9), which is actually a commentary titled “Can Value-Added Add Value to Teacher Evaluation?” This commentary is authored by Linda Darling-Hammond – Professor of Education, Emeritus, at Stanford University.

Like with the last commentary reviewed here, Darling-Hammond reviews some of the key points taken from the five feature articles in the aforementioned “Special Issue.” More specifically, though, Darling-Hammond “reflect[s] on [these five] articles’ findings in light of other work in this field, and [she] offer[s her own] thoughts about whether and how VAMs may add value to teacher evaluation” (p. 132).

She starts her commentary with VAMs “in theory,” in that VAMs COULD accurately identify teachers’ contributions to student learning and achievement IF (and this is a big IF) the following three conditions were met: (1) “student learning is well-measured by tests that reflect valuable learning and the actual achievement of individual students along a vertical scale representing the full range of possible achievement measures in equal interval units” (2) “students are randomly assigned to teachers within and across schools—or, conceptualized another way, the learning conditions and traits of the group of students assigned to one teacher do not vary substantially from those assigned to another;” and (3) “individual teachers are the only contributors to students’ learning over the period of time used for measuring gains” (p. 132).

None of things are actual true (or near to true, nor will they likely ever be true) in educational practice, however. Hence, the errors we continue to observe that continue to prevent VAM use for their intended utilities, even with the sophisticated statistics meant to mitigate errors and account for the above-mentioned, let’s call them, “less than ideal” conditions.

Other pervasive and perpetual issues surrounding VAMs as highlighted by Darling-Hammond, per each of the three categories above, pertain to (1) the tests used to measure value-added is that the tests are very narrow, focus on lower level skills, and are manipulable. These tests in their current form cannot effectively measure the learning gains of a large share of students who are above or below grade level given a lack of sufficient coverage and stretch. As per Haertel (2013, as cited in Darling-Hammond’s commentary), this “translates into bias against those teachers working with the lowest-performing or the highest-performing classes’…and “those who teach in tracked school settings.” It is also important to note here that the new tests created by the Partnership for Assessing Readiness for College and Careers (PARCC) and Smarter Balanced, multistate consortia “will not remedy this problem…Even though they will report students’ scores on a vertical scale, they will not be able to measure accurately the achievement or learning of students who started out below or above grade level” (p.133).

With respect to (2) above, on the equivalence (or rather non-equivalence) of groups of student across teachers classrooms who are the ones whose VAM scores are relativistically compared, the main issue here is that “the U.S. education system is the one of most segregated and unequal in the industrialized world…[likewise]…[t]he country’s extraordinarily high rates of childhood poverty, homelessness, and food insecurity are not randomly distributed across communities…[Add] the extensive practice of tracking to the mix, and it is clear that the assumption of equivalence among classrooms is far from reality” (p. 133). Whether sophisticated statistics can control for all of this variation is one of most debated issues surrounding VAMs and their levels of outcome bias, accordingly.

And as per (3) above, “we know from decades of educational research that many things matter for student achievement aside from the individual teacher a student has at a moment in time for a given subject area. A partial list includes the following [that are also supposed to be statistically controlled for in most VAMs, but are also clearly not controlled for effectively enough, if even possible]: (a) school factors such as class sizes, curriculum choices, instructional time, availability of specialists, tutors, books, computers, science labs, and other resources; (b) prior teachers and schooling, as well as other current teachers—and the opportunities for professional learning and collaborative planning among them; (c) peer culture and achievement; (d) differential summer learning gains and losses; (e) home factors, such as parents’ ability to help with homework, food and housing security, and physical and mental support or abuse; and (e) individual student needs, health, and attendance” (p. 133).

“Given all of these influences on [student] learning [and achievement], it is not surprising that variation among teachers accounts for only a tiny share of variation in achievement, typically estimated at under 10%” (see, for example, highlights from the American Statistical Association’s (ASA’s) Position Statement on VAMs here). “Suffice it to say [these issues]…pose considerable challenges to deriving accurate estimates of teacher effects…[A]s the ASA suggests, these challenges may have unintended negative effects on overall educational quality” (p. 133). “Most worrisome [for example] are [the] studies suggesting that teachers’ ratings are heavily influenced [i.e., biased] by the students they teach even after statistical models have tried to control for these influences” (p. 135).

Other “considerable challenges” include: VAM output are grossly unstable given the swings and variations observed in teacher classifications across time, and VAM output are “notoriously imprecise” (p. 133) given the other errors observed as caused, for example, by varying class sizes (e.g., Sean Corcoran (2010) documented with New York City data that the “true” effectiveness of a teacher ranked in the 43rd percentile could have had a range of possible scores from the 15th to the 71st percentile, qualifying as “below average,” “average,” or close to “above average). In addition, practitioners including administrators and teachers are skeptical of these systems, and their (appropriate) skepticisms are impacting the extent to which they use and value their value-added data, noting that they value their observational data (and the professional discussions surrounding them) much more. Also important is that another likely unintended effect exists (i.e., citing Susan Moore Johnson’s essay here) when statisticians’ efforts to parse out learning to calculate individual teachers’ value-added causes “teachers to hunker down and focus only on their own students, rather than working collegially to address student needs and solve collective problems” (p. 134). Related, “the technology of VAM ranks teachers against each other relative to the gains they appear to produce for students, [hence] one teacher’s gain is another’s loss, thus creating disincentives for collaborative work” (p. 135). This is what Susan Moore Johnson termed the egg-crate model, or rather the egg-crate effects.

Darling-Hammond’s conclusions are that VAMs have “been prematurely thrust into policy contexts that have made it more the subject of advocacy than of careful analysis that shapes its use. There is [good] reason to be skeptical that the current prescriptions for using VAMs can ever succeed in measuring teaching contributions well (p. 135).

Darling-Hammond also “adds value” in one whole section (highlighted in another post forthcoming here), offering a very sound set of solutions, using VAMs for teacher evaluations or not. Given it’s rare in this area of research we can focus on actual solutions, this section is a must read. If you don’t want to wait for the next post, read Darling-Hammond’s “Modest Proposal” (p. 135-136) within her larger article here.

In the end, Darling-Hammond writes that, “Trying to fix VAMs is rather like pushing on a balloon: The effort to correct one problem often creates another one that pops out somewhere else” (p. 135).

*****

If interested, see the Review of Article #1 – the introduction to the special issue here; see the Review of Article #2 – on VAMs’ measurement errors, issues with retroactive revisions, and (more) problems with using standardized tests in VAMs here; see the Review of Article #3 – on VAMs’ potentials here; see the Review of Article #4 – on observational systems’ potentials here; see the Review of Article #5 – on teachers’ perceptions of observations and student growth here; see the Review of Article (Essay) #6 – on VAMs as tools for “egg-crate” schools here; and see the Review of Article (Commentary) #7 – on VAMs situated in their appropriate ecologies here.

Article #8, Part I Reference: Darling-Hammond, L. (2015). Can value-added add value to teacher evaluation? Educational Researcher, 44(2), 132-137. doi:10.3102/0013189X15575346

Everything is Bigger (and Badder) in Texas: Houston’s Teacher Value-Added System

Last November, I published a post about “Houston’s “Split” Decision to Give Superintendent Grier $98,600 in Bonuses, Pre-Resignation.” Thereafter, I engaged some of my former doctoral students to further explore some data from Houston Independent School District (HISD), and what we collectively found and wrote up was just published in the highly-esteemed Teachers College Record journal (Amrein-Beardsley, Collins, Holloway-Libell, & Paufler, 2016). To view the full commentary, please click here.

In this commentary we discuss HISD’s highest-stakes use of its Education Value-Added Assessment System (EVAAS) data – the value-added system HISD pays for at an approximate rate of $500,000 per year. This district has used its EVAAS data for more consequential purposes (e.g., teacher merit pay and termination) than any other state or district in the nation; hence, HISD is well known for its “big use” of “big data” to reform and inform improved student learning and achievement throughout the district.

We note in this commentary, however, that as per the evidence, and more specifically the recent release of the Texas’s large-scale standardized test scores, that perhaps attaching such high-stakes consequences to teachers’ EVAAS output in Houston is not working as district leaders have, now for years, intended. See, for example, the recent test-based evidence comparing the state of Texas v. HISD, illustrated below.

Figure 1

“Perhaps the district’s EVAAS system is not as much of an “educational-improvement and performance-management model that engages all employees in creating a culture of excellence” as the district suggests (HISD, n.d.a). Perhaps, as well, we should “ponder the specific model used by HISD—the aforementioned EVAAS—and [EVAAS modelers’] perpetual claims that this model helps teachers become more “proactive [while] making sound instructional choices;” helps teachers use “resources more strategically to ensure that every student has the chance to succeed;” or “provides valuable diagnostic information about [teachers’ instructional] practices” so as to ultimately improve student learning and achievement (SAS Institute Inc., n.d.).

The bottom line, though, is that “Even the simplest evidence presented above should at the very least make us question this particular value-added system, as paid for, supported, and applied in Houston for some of the biggest and baddest teacher-level consequences in town.” See, again, the full text and another, similar graph in the commentary, linked  here.

*****

References:

Amrein-Beardsley, A., Collins, C., Holloway-Libell, J., & Paufler, N. A. (2016). Everything is bigger (and badder) in Texas: Houston’s teacher value-added system. [Commentary]. Teachers College Record. Retrieved from http://www.tcrecord.org/Content.asp?ContentId=18983

Houston Independent School District (HISD). (n.d.a). ASPIRE: Accelerating Student Progress Increasing Results & Expectations: Welcome to the ASPIRE Portal. Retrieved from http://portal.battelleforkids.org/Aspire/home.html

SAS Institute Inc. (n.d.). SAS® EVAAS® for K–12: Assess and predict student performance with precision and reliability. Retrieved from www.sas.com/govedu/edu/k12/evaas/index.html

A Retired Massachusetts Principal on her Teachers’ “Value-Added”

A retired Massachusetts principal, named Linda Murdock, posted a post on her blog titled “Murdock’s EduCorner” about her experiences, as a principal, with “value-added,” or more specifically in her state the use of Student Growth Percentile (SGP) scores to estimate said “value-added.” It’s certainly worth reading as one thing I continue to find is that which we continue to find in the research on value-added models (VAMs) is also being realized by practitioners in the schools being required to use value-added output such as these. In this case, for example, while Murdock does not discuss the technical terms we use in the research (e.g., reliability, validity, and bias), she discusses these in pragmatic, real terms (e.g., year-to-year fluctuations, lack of relationship of SGP scores and other indicators of teacher effectiveness, and the extent to which certain sets of students can hinder teachers’ demonstrated growth or value-added, respectively). Hence, do give her post a read here, and also pasted in full below. Do also pay special attention to the bulleted sections in which she discusses these and other issues on a case-by-case basis.

Murdock writes:

At the end of the last school year, I was chatting with two excellent teachers, and our conversation turned to the new state-mandated teacher evaluation system and its use of student “growth scores” (“Student Growth Percentiles” or “SGPs” in Massachusetts) to measure a teacher’s “impact on student learning.”

“Guess we didn’t have much of an impact this year,” said one teacher.

The other teacher added, “It makes you feel about this high,” showing a tiny space between her thumb and forefinger.

Throughout the school, comments were similar — indicating that a major “impact” of the new evaluation system is demoralizing and discouraging teachers. (How do I know, by the way, that these two teachers are excellent? I know because I worked with them as their principal – being in their classrooms, observing and offering feedback, talking to parents and students, and reviewing products demonstrating their students’ learning – all valuable ways of assessing a teacher’s “impact”.)

According to the Massachusetts Department of Elementary and Secondary Education (“DESE”), the new evaluation system’s goals include promoting the “growth and development of leaders and teachers,” and recognizing “excellence in teaching and leading.” The DESE website indicates that the DESE considers a teacher’s median SGP as an appropriate measure of that teacher’s “impact on student learning”:

“ESE has confidence that SGPs are a high quality measure of student growth. While the precision of a median SGP decreases with fewer students, median SGP based on 8-19 students still provides quality information that can be included in making a determination of an educator’s impact on students.”

Given the many concerns about the use of “value-added measurement” tools (such as SGPs) in teacher evaluation, this confidence is difficult to understand, particularly as applied to real teachers in real schools. Considerable research notes the imprecision and variability of these measures as applied to the evaluation of individual teachers. On the other side, experts argue that use of an “imperfect measure” is better than past evaluation methods. Theories aside, I believe that the actual impact of this “measure” on real people in real schools is important.

As a principal, when I first heard of SGPs I was curious. I wondered whether the data would actually filter out other factors affecting student performance, such as learning disabilities, English language proficiency, or behavioral challenges, and I wondered if the data would give me additional information useful in evaluating teachers.

Unfortunately, I found that SGPs did not provide useful information about student growth or learning, and median SGPs were inconsistent and not correlated with teaching skill, at least for the teachers with whom I was working. In two consecutive years of SGP data from our Massachusetts elementary school:

  • One 4th grade teacher had median SGPs of 37 (ELA) and 36 (math) in one year, and 61.5 and 79 the next year. The first year’s class included students with disabilities and the next year’s did not.
  • Two 4th grade teachers who co-teach their combined classes (teaching together, all students, all subjects) had widely differing median SGPs: one teacher had SGPs of 44 (ELA) and 42 (math) in the first year and 40 and 62.5 in the second, while the other teacher had SGPs of 61 and 50 in the first year and 41 and 45 in the second.
  • A 5th grade teacher had median SGPs of 72.5 and 64 for two math classes in the first year, and 48.5, 26, and 57 for three math classes in the following year. The second year’s classes included students with disabilities and English language learners, but the first year’s did not.
  • Another 5th grade teacher had median SGPs of 45 and 43 for two ELA classes in the first year, and 72 and 64 in the second year. The first year’s classes included students with disabilities and students with behavioral challenges while the second year’s classes did not.

As an experienced observer/evaluator, I found that median SGPs did not correlate with teachers’ teaching skills but varied with class composition. Stronger teachers had the same range of SGPs in their classes as teachers with weaker skills, and median SGPs for a new teacher with a less challenging class were higher than median SGPs for a highly skilled veteran teacher with a class that included English language learners.

Furthermore, SGP data did not provide useful information regarding student growth. In analyzing students’ SGPs, I noticed obvious general patterns: students with disabilities had lower SGPs than students without disabilities, English language learners had lower SGPs than students fluent in English, students who had some kind of trauma that year (e.g., parents’ divorce) had lower SGPs, and students with behavioral/social issues had lower SGPs. SGPs were correlated strongly with test performance: in one year, for example, the median ELA SGP for students in the “Advanced” category was 88, compared with 51.5 for “Proficient” students, 19.5 for “Needs Improvement,” and 5 for the “Warning” category.

There were also wide swings in student SGPs, not explainable except perhaps by differences in student performance on particular test days. One student with disabilities had an SGP of 1 in the first year and 71 in the next, while another student had SGPs of 4 in ELA and 94 in math in 4th grade and SGPs of 50 in ELA and 4 in math in 5th grade, both with consistent district test scores.

So how does this “information” impact real people in a real school?  As a principal, I found that it added nothing to what I already knew about the teaching and learning in my school. Using these numbers for teacher evaluation does, however, negatively impact schools: it demoralizes and discourages teachers, and it has the potential to affect class and teacher assignments.

In real schools, student and teacher assignments are not random. Students are grouped for specific purposes, and teachers are assigned classes for particular reasons. Students with disabilities and English language learners are often grouped to allow specialists, such as the speech/language teacher or the ELL teacher, to work more effectively with them. Students with behavioral issues are sometimes placed in special classes, and are often assigned to teachers who work particularly well with them. Leveled classes (AP, honors, remedial), create different student combinations, and teachers are assigned particular classes based on the administrator’s judgment of which teachers will do the best with which classes. For example, I would assign new or struggling teachers less challenging classes so I could work successfully with them on improving their skills.

In the past, when I told a teacher that he/she had a particularly challenging class, because he/she could best work with these students, he/she generally cheerfully accepted the challenge, and felt complimented on his/her skills. Now, that teacher could be concerned about the effect of that class on his/her evaluation. Teachers may be reluctant to teach lower level courses, or to work with English language learners or students with behavioral issues, and administrators may hesitate to assign the most challenging classes to the most skilled teachers.

In short, in my experience, the use of this type of “value-added” measurement provides no useful information and has a negative impact on real teachers and real administrators in real schools. If “data” is not only not useful, but actively harmful, to those who are supposedly benefitting from using it, what is the point? Why is this continuing?

In Schools, Teacher Quality Matters Most

Education Next — a non peer-reviewed journal with a mission to “steer a steady course, presenting the facts as best they can be determined…[while]…partak[ing] of no program, campaign, or ideology,” although these last claims are certainly of controversy (see, for example, here and here) — just published an article titled “In Schools, Teacher Quality Matters Most” as part of the journal’s series commemorating the 50th anniversary of James Coleman’s (and colleagues’) groundbreaking 1966 report, “Equality of Educational Opportunity.”

For background, the purpose of The Coleman Report was to assess the equal educational opportunities provided to children of different race, color, religion, and national origin. The main finding was that what we know today as students of color (although African American students were of primary focus in this study), who are (still) often denied equal educational opportunities due to a variety of factors, are largely and unequally segregated across America’s public schools, especially as segregated from their white and wealthier peers. These disparities were most notable via achievement measures, and what we know today as “the achievement gap.” Accordingly, Coleman et al. argued that equal opportunities for students in said schools mattered (and continue to matter) much more for these traditionally marginalized and segregated students than for those who were/are whiter and more economically fortunate. In addition, Coleman argued that out-of-school influences also mattered much more than in-school influences on said achievement. On this point, though, The Coleman Report was of great controversy, and (mis)interpreted as (still) supporting arguments that students’ teachers and schools do/don’t matter as much as students’ families and backgrounds do.

Hence, the Education Next article of focus in this post takes this up, 50 years later, and post the advent of value-added models (VAMs) as better measures than those to which Coleman and his colleagues had access. The article is authored by Dan Goldhaber — a Professor at the University of Washington Bothell, Director of the National Center for Analysis of Longitudinal Data in Education Research (CALDER), and a Vice-President at the American Institutes of Research (AIR). AIR is one of our largest VAM consulting/contract firms, and Goldabher is, accordingly, perhaps one of the field’s most vocal proponents of VAMs and their capacities to both measure and increase teachers’ noteworthy effects (see, for example here); hence, it makes sense he writes about said teacher effects in this article, and in this particular journal (see, for example, Education Next’s Editorial and Editorial Advisory Board members here).

Here is his key claim.

Goldhaber argues that The Coleman Report’s “conclusions about the importance of teacher quality, in particular, have stood the test of time, which is noteworthy, [especially] given that today’s studies of the impacts of teachers [now] use more-sophisticated statistical methods and employ far better data” (i.e., VAMs). Accordingly, Goldhaber’s primary conclusion is that “the main way that schools affect student outcomes is through the quality of their teachers.”

Note that Goldhaber does not offer in this article much evidence, other than evidence not cited or provided by some of his econometric friends (e.g., Raj Chetty). Likewise, Goldhaber cites none of the literature coming from educational statistics, even though recent estimates [1] suggest that approximately 83% of articles written since 1893 (the year in which the first article about VAMs was ever published, in the Journal of Political Economy) on this topic have been published in educational journals, and 14% have been published in economics journals (3% have been published in education finance journals). Hence, what we are clearly observing as per the literature on this topic are severe slants in perspective, especially when articles such as these are written by econometricians, versus educational researchers and statisticians, who often marginalize the research of their education, discipline-based colleagues.

Likewise, Goldhaber does not cite or situate any of his claims within the recent report released by the American Statistical Association (ASA), in which it is written that “teachers account for about 1% to 14% of the variability in test scores.” While teacher effects do matter, they do not matter nearly as much as many, including many/most VAM proponents including Goldhaber, would like us to naively accept and believe. The truth of the matter is is that teachers do indeed matter, in many ways including their impacts on students’ affects, motivations, desires, aspirations, senses of efficacy, and the like, all of which are not estimated on the large-scale standardized tests that continue to matter and that are always the key dependent variables across these and all VAM-based studies today. As Coleman argued 50 years ago, as recently verified by the ASA, students’ out-of-school and out-of-classroom environments matter more, as per these dependent variables or measures.

I think I’ll take ASA’s “word” on this, also as per Coleman’s research 50 years prior.

*****

[1] Reference removed as the manuscript is currently under blind peer-review. Email me if you have any questions at audrey.beardsley@asu.edu

Houston Lawsuit Update, with Summary of Expert Witnesses’ Findings about the EVAAS

Recall from a prior post that a set of teachers in the Houston Independent School District (HISD), with the support of the Houston Federation of Teachers (HFT) are taking their district to federal court to fight for their rights as professionals, and how their value-added scores, derived via the Education Value-Added Assessment System (EVAAS), have allegedly violated them. The case, Houston Federation of Teachers, et al. v. Houston ISD, is to officially begin in court early this summer.

More specifically, the teachers are arguing that EVAAS output are inaccurate, the EVAAS is unfair, that teachers are being evaluated via the EVAAS using tests that do not match the curriculum they are to teach, that the EVAAS system fails to control for student-level factors that impact how well teachers perform but that are outside of teachers’ control (e.g., parental effects), that the EVAAS is incomprehensible and hence very difficult if not impossible to actually use to improve upon their instruction (i.e., actionable), and, accordingly, that teachers’ due process rights are being violated because teachers do not have adequate opportunities to change as a results of their EVAAS results.

The EVAAS is the one value-added model (VAM) on which I’ve conducted most of my research, also in this district (see, for example, here, here, here, and here); hence, I along with Jesse Rothstein – Professor of Public Policy and Economics at the University of California – Berkeley, who also conducts extensive research on VAMs – are serving as the expert witnesses in this case.

What was recently released regarding this case is a summary of the contents of our affidavits, as interpreted by authors of the attached “EVAAS Litigation UPdate,” in which the authors declare, with our and others’ research in support, that “Studies Declare EVAAS ‘Flawed, Invalid and Unreliable.” Here are the twelve key highlights, again, as summarized by the authors of this report and re-summarized, by me, below:

  1. Large-scale standardized tests have never been validated for their current uses. In other words, as per my affidavit, “VAM-based information is based upon large-scale achievement tests that have been developed to assess levels of student achievement, but not levels of growth in student achievement over time, and not levels of growth in student achievement over time that can be attributed back to students’ teachers, to capture the teachers’ [purportedly] causal effects on growth in student achievement over time.”
  2. The EVAAS produces different results from another VAM. When, for this case, Rothstein constructed and ran an alternative, albeit sophisticated VAM using data from HISD both times, he found that results “yielded quite different rankings and scores.” This should not happen if these models are indeed yielding indicators of truth, or true levels of teacher effectiveness from which valid interpretations and assertions can be made.
  3. EVAAS scores are highly volatile from one year to the next. Rothstein, when running the actual data, found that while “[a]ll VAMs are volatile…EVAAS growth indexes and effectiveness categorizations are particularly volatile due to the EVAAS model’s failure to adequately account for unaccounted-for variation in classroom achievement.” In addition, volatility is “particularly high in grades 3 and 4, where students have relatively few[er] prior [test] scores available at the time at which the EVAAS scores are first computed.”
  4. EVAAS overstates the precision of teachers’ estimated impacts on growth. As per Rothstein, “This leads EVAAS to too often indicate that teachers are statistically distinguishable from the average…when a correct calculation would indicate that these teachers are not statistically distinguishable from the average.”
  5. Teachers of English Language Learners (ELLs) and “highly mobile” students are substantially less likely to demonstrate added value, as per the EVAAS, and likely most/all other VAMs. This, what we term as “bias,” makes it “impossible to know whether this is because ELL teachers [and teachers of highly mobile students] are, in fact, less effective than non-ELL teachers [and teachers of less mobile students] in HISD, or whether it is because the EVAAS VAM is biased against ELL [and these other] teachers.”
  6. The number of students each teacher teaches (i.e., class size) also biases teachers’ value-added scores. As per Rothstein, “teachers with few linked students—either because they teach small classes or because many of the students in their classes cannot be used for EVAAS calculations—are overwhelmingly [emphasis added] likely to be assigned to the middle effectiveness category under EVAAS (labeled “no detectable difference [from average], and average effectiveness”) than are teachers with more linked students.”
  7. Ceiling effects are certainly an issue. Rothstein found that in some grades and subjects, “teachers whose students have unusually high prior year scores are very unlikely to earn high EVAAS scores, suggesting that ‘ceiling effects‘ in the tests are certainly relevant factors.” While EVAAS and HISD have previously acknowledged such problems with ceiling effects, they apparently believe these effects are being mediated with the new and improved tests recently adopted throughout the state of Texas. Rothstein, however, found that these effects persist even given the new and improved.
  8. There are major validity issues with “artificial conflation.” This is a term I recently coined to represent what is happening in Houston, and elsewhere (e.g., Tennessee), when district leaders (e.g., superintendents) mandate or force principals and other teacher effectiveness appraisers or evaluators, for example, to align their observational ratings of teachers’ effectiveness with value-added scores, with the latter being the “objective measure” around which all else should revolve, or align; hence, the conflation of the one to match the other, even if entirely invalid. As per my affidavit, “[t]o purposefully and systematically endorse the engineering and distortion of the perceptible ‘subjective’ indicator, using the perceptibly ‘objective’ indicator as a keystone of truth and consequence, is more than arbitrary, capricious, and remiss…not to mention in violation of the educational measurement field’s Standards for Educational and Psychological Testing” (American Educational Research Association (AERA), American Psychological Association (APA), National Council on Measurement in Education (NCME), 2014).
  9. Teaching-to-the-test is of perpetual concern. Both Rothstein and I, independently, noted concerns about how “VAM ratings reward teachers who teach to the end-of-year test [more than] equally effective teachers who focus their efforts on other forms of learning that may be more important.”
  10. HISD is not adequately monitoring the EVAAS system. According to HISD, EVAAS modelers keep the details of their model secret, even from them and even though they are paying an estimated $500K per year for district teachers’ EVAAS estimates. “During litigation, HISD has admitted that it has not performed or paid any contractor to perform any type of verification, analysis, or audit of the EVAAS scores. This violates the technical standards for use of VAM that AERA specifies, which provide that if a school district like HISD is going to use VAM, it is responsible for ‘conducting the ongoing evaluation of both intended and unintended consequences’ and that ‘monitoring should be of sufficient scope and extent to provide evidence to document the technical quality of the VAM application and the validity of its use’ (AERA Statement, 2015).
  11. EVAAS lacks transparency. AERA emphasizes the importance of transparency with respect to VAM uses. For example, as per the AERA Council who wrote the aforementioned AERA Statement, “when performance levels are established for the purpose of evaluative decisions, the methods used, as well as the classification accuracy, should be documented and reported” (AERA Statement, 2015). However, and in contrast to meeting AERA’s requirements for transparency, in this district and elsewhere, as per my affidavit, the “EVAAS is still more popularly recognized as the ‘black box’ value-added system.”
  12. Related, teachers lack opportunities to verify their own scores. This part is really interesting. “As part of this litigation, and under a very strict protective order that was negotiated over many months with SAS [i.e., SAS Institute Inc. which markets and delivers its EVAAS system], Dr. Rothstein was allowed to view SAS’ computer program code on a laptop computer in the SAS lawyer’s office in San Francisco, something that certainly no HISD teacher has ever been allowed to do. Even with the access provided to Dr. Rothstein, and even with his expertise and knowledge of value-added modeling, [however] he was still not able to reproduce the EVAAS calculations so that they could be verified.”Dr. Rothstein added, “[t]he complexity and interdependency of EVAAS also presents a barrier to understanding how a teacher’s data translated into her EVAAS score. Each teacher’s EVAAS calculation depends not only on her students, but also on all other students with- in HISD (and, in some grades and years, on all other students in the state), and is computed using a complex series of programs that are the proprietary business secrets of SAS Incorporated. As part of my efforts to assess the validity of EVAAS as a measure of teacher effectiveness, I attempted to reproduce EVAAS calculations. I was unable to reproduce EVAAS, however, as the information provided by HISD about the EVAAS model was far from sufficient.”

Special Issue of “Educational Researcher” (Paper #6 of 9): VAMs as Tools for “Egg-Crate” Schools

Recall that the peer-reviewed journal Educational Researcher (ER) – published a “Special Issue” including nine articles examining value-added measures (VAMs). I have reviewed the next of nine articles (#6 of 9), which is actually an essay here, titled “Will VAMS Reinforce the Walls of the Egg-Crate School?” This essay is authored by Susan Moore Johnson – Professor of Education at Harvard and somebody who I in the past I had the privilege of interviewing as an esteemed member of the National Academy of Education (see interviews here and here).

In this article, Moore Johnson argues that when policymakers use VAMs to evaluate, reward, or dismiss teachers, they may be perpetuating an egg-crate model, which is (referencing Tyack (1974) and Lortie (1975)) a metaphor for the compartmentalized school structure in which teachers (and students) work, most often in isolation. This model ultimately undermines the efforts of all involved in the work of schools to build capacity school wide, and to excel as a school given educators’ individual and collective efforts.

Contrary to the primary logic supporting VAM use, however, “teachers are not inherently effective or ineffective” on their own. Rather, their collective effectiveness is related to their professional development that may be stunted when they work alone, “without the benefit of ongoing collegial influence” (p. 119). VAMs then, and unfortunately, can cause teachers and administrators to (hyper)focus “on identifying, assigning, and rewarding or penalizing individual [emphasis added] teachers for their effectiveness in raising students’ test scores [which] depends primarily on the strengths of individual teachers” (p. 119). What comes along with this, then, are a series of interrelated egg-crate behaviors including, but not limited to, increased competition, lack of collaboration, increased independence versus interdependence, and the like, all of which can lead to decreased morale and decreased effectiveness in effect.

Inversely, students are much “better served when human resources are deliberately organized to draw on the strengths of all teachers on behalf of all students, rather than having students subjected to the luck of the draw in their classroom assignment[s]” (p. 119). Likewise, “changing the context in which teachers work could have important benefits for students throughout the school, whereas changing individual teachers without changing the context [as per VAMs] might not [work nearly as well] (Lohr, 2012)” (p. 120). Teachers learning from their peers, working in teams, teaching in teams, co-planning, collaborating, learning via mentoring by more experienced teachers, learning by mentoring, and the like should be much more valued, as warranted via the research, yet they are not valued given the very nature of VAM use.

Hence, there are also unintended consequences that can also come along with the (hyper)use of individual-level VAMs. These include, but are not limited to: (1) Teachers who are more likely to “literally or figuratively ‘close their classroom door’ and revert to working alone…[This]…affect[s] current collaboration and shared responsibility for school improvement, thus reinforcing the walls of the egg-crate school” (p. 120); (2) Due to bias, or that teachers might be unfairly evaluated given the types of students non-randomly assigned into their classrooms, teachers might avoid teaching high-needs students if teachers perceive themselves to be “at greater risk” of teaching students they cannot grow; (3) This can perpetuate isolative behaviors, as well as behaviors that encourage teachers to protect themselves first, and above all else; (4) “Therefore, heavy reliance on VAMS may lead effective teachers in high-need subjects and schools to seek safer assignments, where they can avoid the risk of low VAMS scores[; (5) M]eanwhile, some of the most challenging teaching assignments would remain difficult to fill and likely be subject to repeated turnover, bringing steep costs for students” (p. 120); While (6) “using VAMS to determine a substantial part of the teacher’s evaluation or pay [also] threatens to sidetrack the teachers’ collaboration and redirect the effective teacher’s attention to the students on his or her roster” (p. 120-121) versus students, for example, on other teachers’ rosters who might also benefit from other teachers’ content area or other expertise. Likewise (7) “Using VAMS to make high-stakes decisions about teachers also may have the unintended effect of driving skillful and committed teachers away from the schools that need them most and, in the extreme, causing them to leave the profession” in the end (p. 121).

I should add, though, and in all fairness given the Review of Paper #3 – on VAMs’ potentials here, many of these aforementioned assertions are somewhat hypothetical in the sense that they are based on the grander literature surrounding teachers’ working conditions, versus the direct, unintended effects of VAMs, given no research yet exists to examine the above, or other unintended effects, empirically. “There is as yet no evidence that the intensified use of VAMS interferes with collaborative, reciprocal work among teachers and principals or sets back efforts to move beyond the traditional egg-crate structure. However, the fact that we lack evidence about the organizational consequences of using VAMS does not mean that such consequences do not exist” (p. 123).

The bottom line is that we do not want to prevent the school organization from becoming “greater than the sum of its parts…[so that]…the social capital that transforms human capital through collegial activities in schools [might increase] the school’s overall instructional capacity and, arguably, its success” (p. 118). Hence, as Moore Johnson argues, we must adjust the focus “from the individual back to the organization, from the teacher to the school” (p. 118), and from the egg-crate back to a much more holistic and realistic model capturing what it means to be an effective school, and what it means to be an effective teacher as an educational professional within one. “[A] school would do better to invest in promoting collaboration, learning, and professional accountability among teachers and administrators than to rely on VAMS scores in an effort to reward or penalize a relatively small number of teachers” (p. 122).

*****

If interested, see the Review of Article #1 – the introduction to the special issue here; see the Review of Article #2 – on VAMs’ measurement errors, issues with retroactive revisions, and (more) problems with using standardized tests in VAMs here; see the Review of Article #3 – on VAMs’ potentials here; see the Review of Article #4 – on observational systems’ potentials here; and see the Review of Article #5 – on teachers’ perceptions of observations and student growth here.

Article #6 Reference: Moore Johnson, S. (2015). Will VAMS reinforce the walls of the egg-crate school? Educational Researcher, 44(2), 117-126. doi:10.3102/0013189X15573351

The Nation’s “Best Test” Scores Released: Test-Based Policies (Evidently) Not Working

From Diane Ravitch’s Blog (click here for direct link):

Sometimes events happen that seem to be disconnected, but after a few days or weeks, the pattern emerges. Consider this: On October 2, [U.S.] Secretary of Education Arne Duncan announced that he was resigning and planned to return to Chicago. Former New York Commissioner of Education John King, who is a clone of Duncan in terms of his belief in testing and charter schools, was designated to take Duncan’s place. On October 23, the Obama administration held a surprise news conference to declare that testing was out of control and should be reduced to not more than 2% of classroom time [see prior link on this announcement here]. Actually, that wasn’t a true reduction, because 2% translates into between 18-24 hours of testing, which is a staggering amount of annual testing for children in grades 3-8 and not different from the status quo in most states.

Disconnected events?

Not at all. Here comes the pattern-maker: the federal tests called the National Assessment of Educational Progress [NAEP] released its every-other-year report card in reading and math, and the results were dismal. There would be many excuses offered, many rationales, but the bottom line: the NAEP scores are an embarrassment to the Obama administration (and the George W. Bush administration that preceded it).

For nearly 15 years, Presidents Bush and Obama and the Congress have bet billions of dollars—both federal and state—on a strategy of testing, accountability, and choice. They believed that if every student was tested in reading and mathematics every year from grades 3 to 8, test scores would go up and up. In those schools where test scores did not go up, the principals and teachers would be fired and replaced. Where scores didn’t go up for five years in a row, the schools would be closed. Thousands of educators were fired, and thousands of public schools were closed, based on the theory that sticks and carrots, rewards and punishments, would improve education.

But the 2015 NAEP scores released today by the National Assessment Governing Board (a federal agency) showed that Arne Duncan’s $4.35 billion Race to the Top program had flopped. It also showed that George W. Bush’s No Child Left Behind was as phony as the “Texas education miracle” of 2000, which Bush touted as proof of his education credentials.

NAEP is an audit test. It is given every other year to samples of students in every state and in about 20 urban districts. No one can prepare for it, and no one gets a grade. NAEP measures the rise or fall of average scores for states in fourth grade and eighth grade in reading and math and reports them by race, gender, disability status, English language ability, economic status, and a variety of other measures.

The 2015 NAEP scores showed no gains nationally in either grade in either subject. In mathematics, scores declined in both grades, compared to 2013. In reading, scores were flat in grade 4 and lower in grade 8. Usually the Secretary of Education presides at a press conference where he points with pride to increases in certain grades or in certain states. Two years ago, Arne Duncan boasted about the gains made in Tennessee, which had won $500 million in Duncan’s Race to the Top competition. This year, Duncan had nothing to boast about.

In his Race to the Top program, Duncan made testing the primary purpose of education. Scores had to go up every year, because the entire nation was “racing to the top.” Only 12 states won a share of the $4.35 billion that Duncan was given by Congress: Tennessee and Delaware were first to win, in 2010. The next round, the following states won multi-millions of federal dollars to double down on testing: Maryland, Massachusetts, the District of Columbia, Florida, Georgia, Hawaii, New York, North Carolina, Ohio, and Rhode Island.

Tennessee, Duncan’s showcase state in 2013, made no gains in reading or mathematics, neither in fourth grade or eighth grade. The black-white test score gap was as large in 2015 as it had been in 1998, before either NCLB or the Race to the Top.

The results in mathematics were bleak across the nation, in both grades 4 and 8. The declines nationally were only 1 or 2 points, but they were significant in a national assessment on the scale of NAEP.

In fourth grade mathematics, the only jurisdictions to report gains were the District of Columbia, Mississippi, and the Department of Defense schools. Sixteen states had significant declines in their math scores, and thirty-three were flat in relation to 2013 scores. The scores in Tennessee (the $500 million winner) were flat.

In eighth grade, the lack of progress in mathematics was universal. Twenty-two states had significantly lower scores than in 2013, while 30 states or jurisdictions had flat scores. Pennsylvania, Kansas, and Florida (a Race to the Top winner), were the biggest losers, by dropping six points. Among the states that declined by four points were Race to the Top winners Ohio, North Carolina, and Massachusetts. Maryland, Hawaii, New York, and the District of Columbia lost two points. The scores in Tennessee were flat.

The District of Columbia made gains in fourth grade reading and mathematics, but not in eighth grade. It continues to have the largest score gap-—56 points–between white and black students of any urban district in the nation. That is more than double the average of the other 20 urban districts. The state with the biggest achievement gap between black and white students is Wisconsin; it is also the state where black students have the lowest scores, lower than their peers in states like Mississippi and South Carolina. Wisconsin has invested heavily in vouchers and charter schools, which Governor Scott Walker intends to increase.

The best single word to describe NAEP 2015 is stagnation. Contrary to President George W. Bush’s law, many children have been left behind by the strategy of test-and-punish. Contrary to the Obama administration’s Race to the Top program, the mindless reliance on standardized testing has not brought us closer to some mythical “Top.”

No wonder Arne Duncan is leaving Washington. There is nothing to boast about, and the next set of NAEP results won’t be published until 2017. The program that he claimed would transform American education has not raised test scores, but has demoralized educators and created teacher shortages. Disgusted with the testing regime, experienced teachers leave and enrollments in teacher education programs fall. One can only dream about what the Obama administration might have accomplished had it spent that $5 billion in discretionary dollars to encourage states and districts to develop and implement realistic plans for desegregation of their schools, or had they invested the same amount of money in the arts.

The past dozen or so years have been a time when “reformers” like Arne Duncan, Michelle Rhee, Joel Klein, and Bill Gates proudly claimed that they were disrupting school systems and destroying the status quo. Now the “reformers” have become the status quo, and we have learned that disruption is not good for children or education.

Time is running out for this administration, and it is not likely that there will be any meaningful change of course in education policy. One can only hope that the next administration learns important lessons from the squandered resources and failure of NCLB and Race to the Top.